【Autoregressive】从0构造一个基于Paddle的自回归模型库

本文展示基于Paddle构建自回归模型库PaddleAutoregressive的过程。先介绍自回归模型原理,说明其本质为线性模型组合。接着展示基础模块Autoregressive类的搭建,以此封装出AR模型,还介绍了数据读取、模型训练与预测的实现。最后说明将代码封装为库的方法,方便用户通过源码下载、PIP安装和导入使用。项目会持续更新,欢迎交流。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【autoregressive】从0构造一个基于paddle的自回归模型库 - 创想鸟

PaddleAutoregressive 从0构造一个基于Paddle的自回归模型库

自回归是一个传统的时间序列方法,已经有很多开源框架集成提供了对应的使用方法。为了更加便利地使用Paddle进行开发,本项目目的是开发一个基于Paddle的自回归时间序列库。

关于Autoregressive

参考百度百科:“自回归模型(英语:Autoregressive model,简称AR模型),是统计上一种处理时间序列的方法,用同一变数例如x的之前各期,亦即x1至xt-1来预测本期xt的表现,并假设它们为一线性关系。因为这是从回归分析中的线性回归发展而来,只是不用x预测y,而是用x预测 x(自己);所以叫做自回归”。

简单来说,自回归模型本质是一种线性模型,即paddle.nn.Linear。迄今为止,自回归模型已经有很多派生,比如ARX、ARMA、ARARX等等,但这些模型仍然可以通过对Lienar进行组合实现。

关于本项目

本项目并非一个库的推广,而是构造一个库的过程的展示。整个内容会比较粗浅,欢迎大家一起学习交流。

PaddleAutoregressive会随着时间(我闲的没事的时候)而不断更新,维护地址为:https://github.com/Liyulingyue/PaddleAutoregressive,如果大家感兴趣欢迎前往提ISSUR或PR。也可以直接在本项目下评论~

内容介绍

本次介绍的内容如下:

网络 AutoregressiveAR模型的实现与训练封装为库(Setup.py的攥写),通过这种方式可以简单的让大家通过“下载源码 – PIP – import”的方式使用代码

自回归模型

参考知乎页面,几个自回归模型的可以看做满足以下格式:

A(p)y(k)=B(q)u(k)+C(o)v(k)A(p)y(k)=B(q)u(k)+C(o)v(k)

其中:

A(p)y(k)=y(k)+a1y(k−1)+a2y(k−2)+…+apy(k−p)A(p)y(k)=y(k)+a1y(k−1)+a2y(k−2)+…+apy(k−p),B(q)u(k)B(q)u(k)和C(o)v(k)C(o)v(k)类似。yy是因变量uu是自变量vv是扰动项。

特别的,对于最基础的AR模型,可设BB和CC为0,即

A(p)y(k)=0A(p)y(k)=0

⇒A(p)y(k)=y(k)+a1y(k−1)+a2y(k−2)+…+apy(k−p)⇒A(p)y(k)=y(k)+a1y(k−1)+a2y(k−2)+…+apy(k−p)

⇒y(k)=−a1y(k−1)−a2y(k−2)−…−apy(k−p)⇒y(k)=−a1y(k−1)−a2y(k−2)−…−apy(k−p)

因而,我们可以实现一个通用的基础模块,并在这个基础模块的基础上不断封装从而实现AR、ARMA、FIR等时间预测模型。

可图大模型 可图大模型

可图大模型(Kolors)是快手大模型团队自研打造的文生图AI大模型

可图大模型 32 查看详情 可图大模型

代码

基础模块的搭建

显然,自回归模型是一些Linear层的组合。只需要设定各个输入的阶数,在网络中配置对应的Linear层即可。

In [1]

import paddleclass Autoregressive(paddle.nn.Layer):    def __init__(self, y_features, x_features, e_features):        # y_features 是一个整数,是因变量的阶数        # x_features 是一个由整数组成的list,是自变量的阶数,例如有10个自变量,则list的长度为10,每个变量的阶数都可以有所不同        # e_features 是一个整数,误差的阶数        super(Autoregressive, self).__init__()        self.y_features = y_features        self.x_features = x_features        self.e_features = e_features        # 构造一个linear_list用于动态构造Linear层        linear_list = []        if y_features != 0:            linear_list.append(paddle.nn.Linear(y_features, 1, bias_attr=True))        for _x in x_features:            linear_list.append(paddle.nn.Linear(_x, 1, bias_attr=True))        if e_features != 0:            linear_list.append(paddle.nn.Linear(e_features, 1, bias_attr=True))                # 将构造好的网络进行组合        self.linear_list = paddle.nn.Sequential(*linear_list)    def forward(self, *inputs):        # 自回归模型本质是各个Linear的加法,用0初始化输出变量        output = paddle.to_tensor([0]).astype('float32')        # 逐个Linear计算        for i in range(len(self.linear_list)):            output += self.linear_list[i](inputs[i])                    return output

如果我们想模拟FIR(Finite Impulse Response)滤波器,只需要对应的设置y_feature = 0,e_features = 0即可。下述代码建立了一个一阶FIR。

In [2]

model = Autoregressive(0, [1], 0)x = paddle.to_tensor(1,dtype='float32').reshape([1,1])model(x)
Tensor(shape=[1, 1], dtype=float32, place=Place(cpu), stop_gradient=False,       [[0.52980936]])

基于Autoregressive构造AR

AR是自回归模型,即仅保留y_features为对应阶数,x_features 设为 [],e_features设为0即可。从用户的角度来说,他们只希望填入y_features,并不像更多的给x_features进行赋值。因而,我们可以进行适当的封装,仅留一个参数给用户输入即可。

In [4]

import paddleclass AR(paddle.nn.Layer):    def __init__(self, y_features):        super(AR, self).__init__()        self.y_features = y_features        self.Autoregressive = Autoregressive(y_features, [], 0)    def forward(self, *inputs):        # 只有自回归变量y输入,传入inputs和传入inputs[0]都可以        output = self.Autoregressive(inputs[0])        return output

这里也可以通过继承父类的方式实现,考虑到后续的扩展,例如预测隐变量(具体怎么使用Paddle做到还没考虑好),这里优先通过模型组网的方式实现。

In [5]

model = AR(5)paddle.summary(model,(5,5))
----------------------------------------------------------------------------  Layer (type)       Input Shape          Output Shape         Param #    ============================================================================    Linear-2           [[5, 5]]              [5, 1]               6       Autoregressive-2       [[5, 5]]              [5, 1]               0       ============================================================================Total params: 6Trainable params: 6Non-trainable params: 0----------------------------------------------------------------------------Input size (MB): 0.00Forward/backward pass size (MB): 0.00Params size (MB): 0.00Estimated Total Size (MB): 0.00----------------------------------------------------------------------------
{'total_params': 6, 'trainable_params': 6}

模型使用

构造数据读取器

数据使用空气质量数据集。

In [9]

# 读取数据,复现时请到上述链接中下载文件,解压后,将csv文件放在aistudio目录中import pandas as pdimport numpy as npdf = pd.read_csv('AirQualityUCI.csv', sep=';')df = df.dropna(how = 'all')y = df.iloc[:,3].to_list()# 对y进行简单预处理,映射为均值为1的序列y = (np.array(y)/np.array(y).mean()).tolist()

In [10]

import paddleclass MyDateset(paddle.io.Dataset):    def __init__(self, y_list = y, q = 100, mode = 'train'): # q是阶数        super(MyDateset, self).__init__()        self.mode = mode        self.y = y        self.q = q    def __getitem__(self, index):        data = self.y[index:index+self.q]        label = self.y[index + self.q]        data = paddle.to_tensor(data, dtype='float32').reshape([self.q])        label = paddle.to_tensor(label, dtype='float32')        return data,label    def __len__(self):        return len(self.y)-self.qif 1:    train_dataset=MyDateset(y, 100)    train_dataloader = paddle.io.DataLoader(        train_dataset,        batch_size=16,        shuffle=True,        drop_last=False)    for step, data in enumerate(train_dataloader):        data, label = data        print(step, data.shape, label.shape)        break
0 [16, 100] [16, 1]

模型训练

In [ ]

model = AR(100)model.train()if 1:    try:        # 接续之前的模型重复训练        param_dict = paddle.load('./model.pdparams')        model.load_dict(param_dict)    except:        print('no such model file')train_dataset=MyDateset(y, 100)train_dataloader = paddle.io.DataLoader(    train_dataset,    batch_size=64,    shuffle=True,    drop_last=False)max_epoch=100scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.00001, T_max=max_epoch)opt = paddle.optimizer.Adam(learning_rate=scheduler, parameters=model.parameters())now_step=0for epoch in range(max_epoch):    for step, data in enumerate(train_dataloader):        now_step+=1        img, label = data        pre = model(img)        loss = paddle.nn.functional.mse_loss(pre, label).mean()        loss.backward()        opt.step()        opt.clear_gradients()        if now_step%100==0:            print("epoch: {}, batch: {}, loss is: {}".format(epoch, step, loss.mean().numpy()))paddle.save(model.state_dict(), 'model.pdparams')

模型预测

训练好模型后,可以朝后预测。这里给出一个预测100个数据的demo。

In [ ]

data = y[-100:]for i in range(100):    input_y = data[i:i+100]    input_y = paddle.to_tensor(input_y).reshape([1,100])    output_y = model(input_y)    data.append(output_y.numpy()[0][0])

构造包

参考简书 – 编写 python package 中的 setup.py 文件

如果希望用户能够通过“pip – import”的方式使用编写后的代码,需要进行如下操作:

建立一个文件夹将代码文件都塞到文件夹内和文件夹同级目录下编写setup.py文件

本项目的文件夹路径如下

|- PaddleAutoregressive   |- __init__.py # 留空即可   |- AR.py # AR的模型声明,需要从Autoregressive.py中import Autoregressive,打包后import路径要从包名开始   |- Autoregressive.py # 基础模型的声明|-setup.py

setup.py内容如下:

from setuptools import setup, find_packagessetup(    name='PaddleAutoregressive',    packages=find_packages())

上传至github后,即可让用户从拉取源码,pip install -e .,import的方式使用写好的代码啦~

从Git Clone开始使用Autoregressive

In [ ]

# 下载代码! git clone https://github.com/Liyulingyue/PaddleAutoregressive.git%cd ~/PaddleAutoregressive# 安装! pip install -e .

In [ ]

%cd ~import PaddleAutoregressive.AR as ARimport paddlemodel = AR.AR(5)paddle.summary(model,(5,5))

接下来,就可以将AR模型和Paddle模型进行任意组网和训练啦~

以上就是【Autoregressive】从0构造一个基于Paddle的自回归模型库的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/319656.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月5日 09:21:57
下一篇 2025年11月5日 09:22:37

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 旋转长方形后,如何计算其相对于画布左上角的轴距?

    绘制长方形并旋转,计算旋转后轴距 在拥有 1920×1080 画布中,放置一个宽高为 200×20 的长方形,其坐标位于 (100, 100)。当以任意角度旋转长方形时,如何计算它相对于画布左上角的 x、y 轴距? 以下代码提供了一个计算旋转后长方形轴距的解决方案: const x = 200;co…

    2025年12月24日
    000
  • 旋转长方形后,如何计算它与画布左上角的xy轴距?

    旋转后长方形在画布上的xy轴距计算 在画布中添加一个长方形,并将其旋转任意角度,如何计算旋转后的长方形与画布左上角之间的xy轴距? 问题分解: 要计算旋转后长方形的xy轴距,需要考虑旋转对长方形宽高和位置的影响。首先,旋转会改变长方形的长和宽,其次,旋转会改变长方形的中心点位置。 求解方法: 计算旋…

    2025年12月24日
    000
  • 旋转长方形后如何计算其在画布上的轴距?

    旋转长方形后计算轴距 假设长方形的宽、高分别为 200 和 20,初始坐标为 (100, 100),我们将它旋转一个任意角度。根据旋转矩阵公式,旋转后的新坐标 (x’, y’) 可以通过以下公式计算: x’ = x * cos(θ) – y * sin(θ)y’ = x * …

    2025年12月24日
    000
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 如何计算旋转后长方形在画布上的轴距?

    旋转后长方形与画布轴距计算 在给定的画布中,有一个长方形,在随机旋转一定角度后,如何计算其在画布上的轴距,即距离左上角的距离? 以下提供一种计算长方形相对于画布左上角的新轴距的方法: const x = 200; // 初始 x 坐标const y = 90; // 初始 y 坐标const w =…

    2025年12月24日
    200
  • CSS元素设置em和transition后,为何载入页面无放大效果?

    css元素设置em和transition后,为何载入无放大效果 很多开发者在设置了em和transition后,却发现元素载入页面时无放大效果。本文将解答这一问题。 原问题:在视频演示中,将元素设置如下,载入页面会有放大效果。然而,在个人尝试中,并未出现该效果。这是由于macos和windows系统…

    2025年12月24日
    200
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 如何计算旋转后的长方形在画布上的 XY 轴距?

    旋转长方形后计算其画布xy轴距 在创建的画布上添加了一个长方形,并提供其宽、高和初始坐标。为了视觉化旋转效果,还提供了一些旋转特定角度后的图片。 问题是如何计算任意角度旋转后,这个长方形的xy轴距。这涉及到使用三角学来计算旋转后的坐标。 以下是一个 javascript 代码示例,用于计算旋转后长方…

    2025年12月24日
    000
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信