屠榜CV!Swin TransFromer 你又该换Backbone了!

本文介绍Swin Transformer相关知识,对比其与ViT的区别:Swin采用窗口理念和不同下采样倍数,减少计算量且提升性能。还讲解了其Patch层、PatchMerging层、Mlp层及Swin Transformer Block层的实现,包括各层作用、代码和参数等。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

屠榜cv!swin transfromer 你又该换backbone了! - 创想鸟

前情提要

大家好呀,VIsion Transformer已经到第六天了随着时间的推移,难度也是在也来越大的,相信大家已经从ResNet学习到了ViT Transformer再到Diet,今天更是学习到了2021的ICCV最佳论文Swin Transformer,Swin Transformer今年在各大磅单上更是直接屠榜,COCO验证集前8全是使用Swin刷榜,而Swin原本的论文才是第八,前七全是Swin的再创新,https://paperswithcode.com/sota/object-detection-on-coco-minival?p=end-to-end-semi-supervised-object-detection 。如果今天的笔记能够帮助到你那么绝对是我莫大的荣幸。

Swin 与 VIT 的区别

Swin 与 Vit 的区别可以用一张图来说明

屠榜CV!Swin TransFromer 你又该换Backbone了! - 创想鸟        

相比较Vit直接下采样16倍,Swin使用了窗口的理念,并使用不同的下采样倍数,并且不同的窗口的计算是互不干扰的,这样相比较Vit,大大减少了计算量并有效的获得了性能上的提升

Patch层讲解

如果你已经学过ViT的话,你应该知道VIT拥有一个PatchEmbedding层它负责将一批RGB图像由四维映射成为三维

[B,C,H,W]->[B,H*W/N/N,C*N*N]

       

而Swin中PatchEmbedding 的职责由Patch Partition承担,由于朱老师的PPT暂未放出所以这里引用的B站up霹雳吧啦Wz的PPT。

屠榜CV!Swin TransFromer 你又该换Backbone了! - 创想鸟        

由于Swin Transformer不像VIt一样,Swin Fransformer是多次下采样,第一次下采样使用的是4×4的卷积核

之后会通过一个全链接层也叫Linear Embedding层将通道数由48转换为C,而其全貌则为。屠榜CV!Swin TransFromer 你又该换Backbone了! - 创想鸟        

但是在Swin Transformer的代码实现中是直接将Patch Partition与Linear Embedding合而为一,直接使用一个卷积核4×4大小 stride为4的卷积核直接将通道数由3转换为C。

In [1]

import paddleimport paddle.nn as nn

   In [2]

class PatchEmbed(nn.Layer):    """    2D Image to Patch Embedding    """    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=nn.LayerNorm):        super().__init__()        patch_size = (patch_size, patch_size)        self.patch_size = patch_size        self.in_chans = in_c        self.embed_dim = embed_dim        self.proj = nn.Conv2D(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()    def forward(self, x):        _, _, H, W = x.shape        # # padding        # # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding        # pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)        # if pad_input:        #     # to pad the last 3 dimensions,        #     # (W_left, W_right, H_top,H_bottom, C_front, C_back)        #     x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],        #                   0, self.patch_size[0] - H % self.patch_size[0],        #                   0, 0))         # 下采样patch_size倍        x = self.proj(x)        _, _, H, W = x.shape        # flatten: [B, C, H, W] -> [B, C, HW]        # transpose: [B, C, HW] -> [B, HW, C]        x = paddle.transpose(x.flatten(2),(0,2,1))        x = self.norm(x)        print(x.shape)        return x, H, W

   In [3]

model = PatchEmbed()paddle.summary(model,(8,3,224,224))

       

[8, 3136, 96]--------------------------------------------------------------------------- Layer (type)       Input Shape          Output Shape         Param #    ===========================================================================   Conv2D-1      [[8, 3, 224, 224]]    [8, 96, 56, 56]         4,704       LayerNorm-1     [[8, 3136, 96]]       [8, 3136, 96]           192      ===========================================================================Total params: 4,896Trainable params: 4,896Non-trainable params: 0---------------------------------------------------------------------------Input size (MB): 4.59Forward/backward pass size (MB): 36.75Params size (MB): 0.02Estimated Total Size (MB): 41.36---------------------------------------------------------------------------

       

{'total_params': 4896, 'trainable_params': 4896}

               

PatchMerging讲解

由于Swin需要经理四次下采样,而第一次下采样是由patchemmedding 层进行处理,而之后还有三次就是由PatchMerging进行。PatchMerging会将特征图的宽和高再次下采样两倍,并且使得通道数Cx2。这里引用的图解也是引用的B站up霹雳吧啦Wz的PPT。

屠榜CV!Swin TransFromer 你又该换Backbone了! - 创想鸟        

首先我们使用一个2×2大小的卷积核作为窗口,每个窗口都有四个像素,那么我就就把每个窗口相同位置的像素取出,并得到如第二个一样的四个特征矩阵,之后会对这四个特征矩阵在C纬度进行拼接也就得到了4xC,之后再进行一个LinearNorm层,最后通过一个Linear层进行一个线性映射变为2xC。这样 X的shape就变成了

[H/4,W/4,C]->[H/8,W/8,2*C]

   In [4]

class PatchMerging(nn.Layer):    r""" Patch Merging Layer.    Args:        dim (int): Number of input channels.        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm    """    def __init__(self, dim, norm_layer=nn.LayerNorm):        super().__init__()        self.dim = dim        self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False)        self.norm = norm_layer(4 * dim)    def forward(self, x, H=224//4, W=224//4):        """        x: B, H*W, C        """        B, L, C = x.shape        print(x.shape)        assert L == H * W, "input feature has wrong size"        x = paddle.reshape(x,(B, H, W, C))        # # padding        # # 如果输入feature map的H,W不是2的整数倍,需要进行padding        # pad_input = (H % 2 == 1) or (W % 2 == 1)        # if pad_input:        #     # to pad the last 3 dimensions, starting from the last dimension and moving forward.        #     # (C_front, C_back, W_left, W_right, H_top, H_bottom)        #     # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同        #     x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))        x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]        x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]        x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]        x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]        x = paddle.concat([x0, x1, x2, x3], -1)  # [B, H/2, W/2, 4*C]        x = paddle.reshape(x,(B, -1, 4 * C))  # [B, H/2*W/2, 4*C]        x = self.norm(x)        x = self.reduction(x)  # [B, H/2*W/2, 2*C]        print(x.shape)        return x

   In [5]

model = PatchMerging(96)paddle.summary(model,(8,3136,96))

       

[8, 3136, 96][8, 784, 192]--------------------------------------------------------------------------- Layer (type)       Input Shape          Output Shape         Param #    ===========================================================================  LayerNorm-2     [[8, 784, 384]]       [8, 784, 384]           768         Linear-1       [[8, 784, 384]]       [8, 784, 192]         73,728     ===========================================================================Total params: 74,496Trainable params: 74,496Non-trainable params: 0---------------------------------------------------------------------------Input size (MB): 9.19Forward/backward pass size (MB): 27.56Params size (MB): 0.28Estimated Total Size (MB): 37.03---------------------------------------------------------------------------

       

{'total_params': 74496, 'trainable_params': 74496}

               

Swin TansFormer Block 讲解

与VIT TransFormer的Block层相似,Swin TransFormer与之不同的就是使用了S-MSA与SW-MSA来代替MSA,其他都没有改变屠榜CV!Swin TransFromer 你又该换Backbone了! - 创想鸟        

S-SMA与SW-MSA暂时有点难,咱们分到明天再去进行讲解,今天咱们先把整个Block模块进行实现

可以看到Block层是先经过一个LayerNorm然后经过S-MSA或者SW-MSA然后在进过一个Dropout或者是DropPath层,然后进行一个短接,然后再进行一个LayerNrom之后再进行一个Mlp再接一个Dropout或者是DropPath层,然后再来一个短接,这样一个Block层就实现了。

下面我先先来实现之前已经讲过Mlp层。

Mlp讲解

屠榜CV!Swin TransFromer 你又该换Backbone了! - 创想鸟        

Mlp之前朱老师已经讲的很清楚了就是一个Linear层将通道数×4,然后经过GELU激活函数,然后再经过一个Dropout层再经过一个Linear层将通道数变回到原来的通道数,之后再接一个Dropout层

In [6]

class Mlp(nn.Layer):    """ MLP as used in Vision Transformer, MLP-Mixer and related networks    """    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):        super().__init__()        out_features = out_features or in_features        hidden_features = hidden_features or in_features        self.fc1 = nn.Linear(in_features, hidden_features)        self.act = act_layer()        self.drop1 = nn.Dropout(drop)        self.fc2 = nn.Linear(hidden_features, out_features)        self.drop2 = nn.Dropout(drop)    def forward(self, x):        print(x.shape)        x = self.fc1(x)        x = self.act(x)        x = self.drop1(x)        x = self.fc2(x)        x = self.drop2(x)        print(x.shape)        return x

   In [7]

model = Mlp(768)paddle.summary(model,(8,197,768))

       

[8, 197, 768][8, 197, 768]--------------------------------------------------------------------------- Layer (type)       Input Shape          Output Shape         Param #    ===========================================================================   Linear-2       [[8, 197, 768]]       [8, 197, 768]         590,592        GELU-1        [[8, 197, 768]]       [8, 197, 768]            0          Dropout-1      [[8, 197, 768]]       [8, 197, 768]            0          Linear-3       [[8, 197, 768]]       [8, 197, 768]         590,592       Dropout-2      [[8, 197, 768]]       [8, 197, 768]            0       ===========================================================================Total params: 1,181,184Trainable params: 1,181,184Non-trainable params: 0---------------------------------------------------------------------------Input size (MB): 4.62Forward/backward pass size (MB): 46.17Params size (MB): 4.51Estimated Total Size (MB): 55.29---------------------------------------------------------------------------

       

{'total_params': 1181184, 'trainable_params': 1181184}

               

SwinTransformerBlock层实现

下面就是Block层的实现,这里有一个WindowAttention就是S-MSA与SW-MSA的实现,这里就先简单定义一下,没有任何内容。

In [8]

class WindowAttention(nn.Layer):    def __init__(self,dim, window_size, num_heads, qkv_bias,attn_drop, proj_drop):        super().__init__()        pass    def forward(self,x):        return x,x

   In [9]

class SwinTransformerBlock(nn.Layer):    """ Swin Transformer Block.        dim (int): Number of input channels.        num_heads (int): Number of attention heads.        window_size (int): Window size.        shift_size (int): Shift size for SW-MSA.        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True        drop (float, optional): Dropout rate. Default: 0.0        attn_drop (float, optional): Attention dropout rate. Default: 0.0        drop_path (float, optional): Stochastic depth rate. Default: 0.0        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm    """    def __init__(self, dim, num_heads, window_size=7, shift_size=0,            mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,            act_layer=nn.GELU, norm_layer=nn.LayerNorm):        super().__init__()        self.dim = dim        self.num_heads = num_heads        self.window_size = window_size        self.shift_size = shift_size        self.mlp_ratio = mlp_ratio        assert 0 <= self.shift_size  0. else nn.Identity()        self.norm2 = norm_layer(dim)        mlp_hidden_dim = int(dim * mlp_ratio)        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)    def forward(self, x):        H, W = 56, 56        B, L, C = x.shape        assert L == H * W, "input feature has wrong size"        shortcut = x        x = self.norm1(x)        x = paddle.reshape(x,(B, H, W, C))        # # pad feature maps to multiples of window size        # # 把feature map给pad到window size的整数倍        # pad_l = pad_t = 0        # pad_r = (self.window_size - W % self.window_size) % self.window_size        # pad_b = (self.window_size - H % self.window_size) % self.window_size        # x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))        _, Hp, Wp, _ = x.shape#--------------------------------------------------------------------------------------------------##                           S-MSA暂不处理,下次再说#--------------------------------------------------------------------------------------------------#        # # cyclic shift        # if self.shift_size > 0:        #     shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))        # else:        #     shifted_x = x        #     attn_mask = None        # # partition windows        # x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]        # x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]        # # W-MSA/SW-MSA        # attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]        # # merge windows        # attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]        # shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]        # # reverse cyclic shift        # if self.shift_size > 0:        #     x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))        # else:        #     x = shifted_x        # if pad_r > 0 or pad_b > 0:        #     # 把前面pad的数据移除掉        #     x = x[:, :H, :W, :].contiguous()#--------------------------------------------------------------------------------------------------#        x = paddle.reshape(x,(B,H*W,C))        x = shortcut + self.drop_path(x)        x = x + self.drop_path(self.mlp(self.norm2(x)))        return x

   In [10]

model = SwinTransformerBlock(96,3)paddle.summary(model,(8,3136,96))

       

[8, 3136, 96][8, 3136, 96]--------------------------------------------------------------------------- Layer (type)       Input Shape          Output Shape         Param #    ===========================================================================  LayerNorm-3     [[8, 3136, 96]]       [8, 3136, 96]           192         Dropout-3      [[8, 3136, 96]]       [8, 3136, 96]            0         LayerNorm-4     [[8, 3136, 96]]       [8, 3136, 96]           192         Linear-4       [[8, 3136, 96]]       [8, 3136, 384]        37,248         GELU-2        [[8, 3136, 384]]      [8, 3136, 384]           0          Dropout-4      [[8, 3136, 384]]      [8, 3136, 384]           0          Linear-5       [[8, 3136, 384]]      [8, 3136, 96]         36,960        Dropout-5      [[8, 3136, 96]]       [8, 3136, 96]            0            Mlp-2        [[8, 3136, 96]]       [8, 3136, 96]            0       ===========================================================================Total params: 74,592Trainable params: 74,592Non-trainable params: 0---------------------------------------------------------------------------Input size (MB): 9.19Forward/backward pass size (MB): 330.75Params size (MB): 0.28Estimated Total Size (MB): 340.22---------------------------------------------------------------------------

       

{'total_params': 74592, 'trainable_params': 74592}

               

以上就是屠榜CV!Swin TransFromer 你又该换Backbone了!的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/39979.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月6日 05:32:52
下一篇 2025年11月6日 05:35:44

相关推荐

发表回复

登录后才能评论
关注微信