率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

本论文作者杨睿是中国科学技术大学 2019 级硕博连读生,师从王杰教授、李斌教授,主要研究方向为强化学习、自动驾驶等。他曾以第一作者在 neurips、kdd 等顶级期刊与会议上发表论文两篇,曾获滴滴精英实习生(16/1000+)。

近日,中科大王杰教授团队 (MIRA Lab) 针对离线强化学习数据集存在多类数据损坏这一复杂的实际问题,提出了一种鲁棒的变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性,为机器人控制、自动驾驶等领域的鲁棒学习奠定了重要基础。论文发表在 CCF-A 类人工智能顶级会议 Neural Information Processing Systems(NeurIPS 2024)。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

论文地址:https://arxiv.org/abs/2411.00465代码地址:https://github.com/MIRALab-USTC/RL-TRACER

引言

在机器人控制领域,离线强化学习正逐渐成为提升智能体决策和控制能力的关键技术。然而,在实际应用中,离线数据集常常由于传感器故障、恶意攻击等原因而遭受不同程度的损坏。这些损坏可能表现为随机噪声、对抗攻击或其他形式的数据扰动,影响数据集中的状态、动作、奖励和转移动态等关键元素。经典离线强化学习算法往往假设数据集是干净、完好无损的,因此在面对数据损坏时,机器学习到的策略通常趋向于损坏数据中的策略,进而导致机器在干净环境下的部署时性能显著下降。

尽管研究者在鲁棒离线强化学习领域已经取得了一些进展,如一些方法尝试通过增强测试期间的鲁棒性来缓解噪声或对抗攻击的影响,但它们大多在干净数据集上训练智能体模型,以防御测试环境中可能出现的噪声和攻击,缺乏对训练用离线数据集存在损坏的应对方案。而针对离线数据损坏的鲁棒强化学习方法则只关注某一特定类别的数据存在损坏,如状态数据、或转移动态数据存在部分损坏,他们无法有效应对数据集中多个元素同时受损的复杂情况。

为了针对性地解决这些现有算法的局限性,我们提出了一种鲁棒的变分贝叶斯推断方法(TRACER),有效地增强了离线强化学习算法在面临各类数据损坏时的鲁棒性。TRACER 的优势如下所示:

1. 据我们所知,TRACER 首次将贝叶斯推断引入到抗损坏的离线强化学习中。通过将所有离线数据作为观测值,TRACER 捕捉了由各类损坏数据所导致的动作价值函数中的不确定性。

2. 通过引入基于熵的不确定性度量,TRACER 能够区分损坏数据和干净数据,从而调控并减弱损坏数据对智能体模型训练的影响,以增强鲁棒性。

3. 我们在机器人控制(MuJoCo)和自动驾驶(CARLA)仿真环境中进行了系统性地测试,验证了 TRACER 在各类离线数据损坏、单类离线数据损坏的场景中均显著提升了智能体的鲁棒性,超出了多个现有的 SOTA 方法。

1. 方法介绍

1.1 动机

考虑到(1)多种类型的损毁会向数据集的所有元素引入较高的不确定性,(2)每个元素与累积奖励(即动作值、Q 值)之间存在明确的相关性关系(见图 1 中的虚线),因此使用多种受损数据估计累积奖励函数(即动作值函数)会引入很高的不确定性。

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

图 1. 决策过程的概率图模型。实线连接的节点表示数据集中的数据,而虚线连接的 Q 值(即动作值、累积回报)不属于数据集。

为了处理这类由多种数据损毁(即状态、动作、奖励、状态转移数据受损)导致的高不确定性问题,基于图 2 所示的概率图模型,我们提出利用数据集中的所有元素作为观测数据。我们旨在利用这些观测数据与累积奖励之间的高度相关性,来准确地识别动作值函数的不确定性。

1.2 基于受损数据的贝叶斯推断

我们提出使用离线数据集的所有元素作为观测值,利用数据之间的相关性同时解决不确定性问题。具体地,基于离线数据集中动作价值与四个元素(即状态、动作、奖励、下一状态)之间的关系,我们分别使用各个元素作为观测数据,通过引入变分贝叶斯推理框架,我们最大化动作值函数的后验分布,从而推导出各个元素对应的基于最大化证据下界 (ELBO) 的损失函数。基于对动作价值函数的后验分布的拟合,我们能有效地将数据损坏建模为动作值函数中的不确定性。

1.3 基于熵的不确定性度量

为了进一步应对各类数据损坏带来的挑战,我们思考如何利用不确定性进一步增强鲁棒性。鉴于我们的目标是提高在干净环境中的智能体性能,我们提出减少损坏数据的影响,重点是使用干净数据来训练智能体。因此,我们提供了一个两步计划:(1)区分损坏数据和干净数据;(2)调控与损坏数据相关的损失,减少其影响,从而提升在干净环境中的表现。

AI大学堂 AI大学堂

科大讯飞打造的AI学习平台

AI大学堂 87 查看详情 AI大学堂

对于(1),由于损坏数据通常会造成比干净数据更高的不确定性和动作价值分布熵,因此我们提出通过估计动作值分布的熵,来量化损坏数据和干净数据引入的不确定性。

对于 (2),我们使用分布熵指数的倒数来加权我们提出的 ELBO 损失函数。因此,在学习过程中,TRACER 能够通过调控与损坏数据相关的损失来减弱其影响,并同时专注于最小化与干净数据相关的损失,以增强在干净环境中的鲁棒性和性能。

1.4 算法架构

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

图 2. TRACER 算法框架图。

2. 实验介绍

为了模拟数据受损的情形,我们对数据集的部分数据加入随机噪声或对抗攻击来构建损坏数据。在我们的实验中,我们对 30% 的单类数据进行损坏。因此,在所有类型的数据都有损坏时,整个离线数据集中,损坏数据占约率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习的规模。

各类数据均受损

所有类型数据元素均存在损坏的部分实验结果见表 1,TRACER 在所有控制环境中均获得了较为明显的性能提升,提升幅度达 + 21.1%,这一结果展现了 TRACER 对大规模、各类数据损坏的强鲁棒性。

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

表 1. 离线数据集的所有类型元素均存在随机损坏(random)或对抗损坏(advers)时,我们的方法 TRACER 在所有环境中都获得了最高的平均得分。

单类数据受损

单种类型数据元素存在损坏的部分实验结果见表 2 和表 3。在单类数据损坏中,TRACER 于 24 个实验设置里实现 16 组最优性能,可见 TRACER 面向小规模、单类数据损坏的问题也能有效地增强鲁棒性。

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

表 2. 单类元素存在随机损坏时,我们的方法 TRACER 在 8 个实验设置中获得了最高的平均得分。

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

表 3. 单类元素存在对抗损坏时,我们的方法 TRACER 在 8 个实验设置中获得了最高的平均得分。

以上就是率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/410151.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月6日 22:55:50
下一篇 2025年11月6日 22:56:59

相关推荐

  • HTML、CSS 和 JavaScript 中的简单侧边栏菜单

    构建一个简单的侧边栏菜单是一个很好的主意,它可以为您的网站添加有价值的功能和令人惊叹的外观。 侧边栏菜单对于客户找到不同项目的方式很有用,而不会让他们觉得自己有太多选择,从而创造了简单性和秩序。 今天,我将分享一个简单的 HTML、CSS 和 JavaScript 源代码来创建一个简单的侧边栏菜单。…

    2025年12月24日
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    000
  • 带有 HTML、CSS 和 JavaScript 工具提示的响应式侧边导航栏

    响应式侧边导航栏不仅有助于改善网站的导航,还可以解决整齐放置链接的问题,从而增强用户体验。通过使用工具提示,可以让用户了解每个链接的功能,包括设计紧凑的情况。 在本教程中,我将解释使用 html、css、javascript 创建带有工具提示的响应式侧栏导航的完整代码。 对于那些一直想要一个干净、简…

    2025年12月24日
    000
  • 布局 – CSS 挑战

    您可以在 github 仓库中找到这篇文章中的所有代码。 您可以在这里查看视觉效果: 固定导航 – 布局 – codesandbox两列 – 布局 – codesandbox三列 – 布局 – codesandbox圣杯 &#8…

    2025年12月24日
    000
  • 隐藏元素 – CSS 挑战

    您可以在 github 仓库中找到这篇文章中的所有代码。 您可以在此处查看隐藏元素的视觉效果 – codesandbox 隐藏元素 hiding elements hiding elements hiding elements hiding elements hiding element…

    2025年12月24日
    400
  • 居中 – CSS 挑战

    您可以在 github 仓库中找到这篇文章中的所有代码。 您可以在此处查看垂直中心 – codesandbox 和水平中心的视觉效果。 通过 css 居中 垂直居中 centering centering centering centering centering centering立即…

    2025年12月24日 好文分享
    300
  • 如何在 Laravel 框架中轻松集成微信支付和支付宝支付?

    如何用 laravel 框架集成微信支付和支付宝支付 问题:如何在 laravel 框架中集成微信支付和支付宝支付? 回答: 建议使用 easywechat 的 laravel 版,easywechat 是一个由腾讯工程师开发的高质量微信开放平台 sdk,已被广泛地应用于许多 laravel 项目中…

    2025年12月24日
    000
  • 如何在移动端实现子 div 在父 div 内任意滑动查看?

    如何在移动端中实现让子 div 在父 div 内任意滑动查看 在移动端开发中,有时我们需要让子 div 在父 div 内任意滑动查看。然而,使用滚动条无法实现负值移动,因此需要采用其他方法。 解决方案: 使用绝对布局(absolute)或相对布局(relative):将子 div 设置为绝对或相对定…

    2025年12月24日
    000
  • 移动端嵌套 DIV 中子 DIV 如何水平滑动?

    移动端嵌套 DIV 中子 DIV 滑动 在移动端开发中,遇到这样的问题:当子 DIV 的高度小于父 DIV 时,无法在父 DIV 中水平滚动子 DIV。 无限画布 要实现子 DIV 在父 DIV 中任意滑动,需要创建一个无限画布。使用滚动无法达到负值,因此需要使用其他方法。 相对定位 一种方法是将子…

    2025年12月24日
    000
  • 移动端项目中,如何消除rem字体大小计算带来的CSS扭曲?

    移动端项目中消除rem字体大小计算带来的css扭曲 在移动端项目中,使用rem计算根节点字体大小可以实现自适应布局。但是,此方法可能会导致页面打开时出现css扭曲,这是因为页面内容在根节点字体大小赋值后重新渲染造成的。 解决方案: 要避免这种情况,将计算根节点字体大小的js脚本移动到页面的最前面,即…

    2025年12月24日
    000
  • Nuxt 移动端项目中 rem 计算导致 CSS 变形,如何解决?

    Nuxt 移动端项目中解决 rem 计算导致 CSS 变形 在 Nuxt 移动端项目中使用 rem 计算根节点字体大小时,可能会遇到一个问题:页面内容在字体大小发生变化时会重绘,导致 CSS 变形。 解决方案: 可将计算根节点字体大小的 JS 代码块置于页面最前端的 标签内,确保在其他资源加载之前执…

    2025年12月24日
    200
  • Nuxt 移动端项目使用 rem 计算字体大小导致页面变形,如何解决?

    rem 计算导致移动端页面变形的解决方法 在 nuxt 移动端项目中使用 rem 计算根节点字体大小时,页面会发生内容重绘,导致页面打开时出现样式变形。如何避免这种现象? 解决方案: 移动根节点字体大小计算代码到页面顶部,即 head 中。 原理: flexível.js 也遇到了类似问题,它的解决…

    2025年12月24日
    000
  • 形状 – CSS 挑战

    您可以在 github 仓库中找到这篇文章中的所有代码。 您可以在此处查看 codesandbox 的视觉效果。 通过css绘制各种形状 如何在 css 中绘制正方形、梯形、三角形、异形三角形、扇形、圆形、半圆、固定宽高比、0.5px 线? shapes 0.5px line .square { w…

    2025年12月24日
    000
  • 有哪些美观的开源数字大屏驾驶舱框架?

    开源数字大屏驾驶舱框架推荐 问题:有哪些美观的开源数字大屏驾驶舱框架? 答案: 资源包 [弗若恩智能大屏驾驶舱开发资源包](https://www.fanruan.com/resource/152) 软件 [弗若恩报表 – 数字大屏可视化组件](https://www.fanruan.c…

    2025年12月24日
    000
  • 网站底部如何实现飘彩带效果?

    网站底部飘彩带效果的 js 库实现 许多网站都会在特殊节日或活动中添加一些趣味性的视觉效果,例如点击按钮后散发的五彩缤纷的彩带。对于一个特定的网站来说,其飘彩带效果的实现方式可能有以下几个方面: 以 https://dub.sh/ 网站为例,它底部按钮点击后的彩带效果是由 javascript 库实…

    2025年12月24日
    000
  • 网站彩带效果背后是哪个JS库?

    网站彩带效果背后是哪个js库? 当你访问某些网站时,点击按钮后,屏幕上会飘出五颜六色的彩带,营造出庆祝的氛围。这些效果是通过使用javascript库实现的。 问题: 哪个javascript库能够实现网站上点击按钮散发彩带的效果? 答案: 根据给定网站的源代码分析: 可以发现,该网站使用了以下js…

    好文分享 2025年12月24日
    100
  • 产品预览卡项目

    这个项目最初是来自 Frontend Mentor 的挑战,旨在使用 HTML 和 CSS 创建响应式产品预览卡。最初的任务是设计一张具有视觉吸引力和功能性的产品卡,能够无缝适应各种屏幕尺寸。这涉及使用 CSS 媒体查询来确保布局在不同设备上保持一致且用户友好。产品卡包含产品图像、标签、标题、描述和…

    2025年12月24日
    100
  • 如何利用 echarts-gl 绘制带发光的 3D 图表?

    如何绘制带发光的 3d 图表,类似于 echarts 中的示例? 为了实现类似的 3d 图表效果,需要引入 echarts-gl 库:https://github.com/ecomfe/echarts-gl。 echarts-gl 专用于在 webgl 环境中渲染 3d 图形。它提供了各种 3d 图…

    2025年12月24日
    000
  • 如何在 Element UI 的 el-rate 组件中实现 5 颗星 5 分制与百分制之间的转换?

    如何在el-rate中将5颗星5分制的分值显示为5颗星百分制? 要实现该效果,只需使用 el-rate 组件的 allow-half 属性。在设置 allow-half 属性后,获得的结果乘以 20 即可得到0-100之间的百分制分数。如下所示: score = score * 20; 动态显示鼠标…

    2025年12月24日
    100
  • CSS 最佳实践:后端程序员重温 CSS 时常见的三个疑问?

    CSS 最佳实践:提升代码质量 作为后端程序员,在重温 CSS/HTML 时,你可能会遇到一些关于最佳实践的问题。以下将解答三个常见问题,帮助你编写更规范、清晰的 CSS 代码。 1. margin 设置策略 当相邻元素都设置了 margin 时,通常情况下应为上一个元素设置 margin-bott…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信