LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR’24)

光真实感模拟在自动驾驶等应用中发挥着关键作用,其中神经网络辐射场(NeRFs)的进步可能通过自动创建数字3D资产来实现更好的可扩展性。然而,由于街道上相机运动的高度共线性和在高速下的稀疏采样,街景的重建质量受到影响。另一方面,该应用通常需要从偏离输入视角的相机视角进行渲染,以准确模拟如变道等行为。LidaRF提出了几个见解,允许更好地利用激光雷达数据来改善街景中NeRF的质量。首先,框架从激光雷达数据中学习几何场景表示,这些表示与基于隐式网格的解码器相结合,从而提供了由显示点云提供的更强的几何信息。其次,提出了一种鲁棒的遮挡感知深度监督训练策略,允许通过累积使用密集激光雷达点云的强势信息来改善街景中的NeRF重建质量。第三,根据激光雷达点的强度生成增强的训练视角,以进一步改进在真实驾驶场景下的新视角合成中获取的显著改进。这样,通过框架从激光雷达数据中学习到的更加准确的几何场景表示,可以一步改进方法并在真实驾驶场景下获取更好的显著改进。

LidaRF的贡献主要体现在三个方面:

(i)混合激光雷达编码和网格特征以增强场景表示。虽然激光雷达已被用作自然的深度监控源,但将激光雷达纳入NeRF输入中,为几何归纳提供了巨大的潜力,但实现起来并不简单。为此,借用了基于网格的表示法,但将从点云中学习的特征融合到网格中,以继承显式点云表示法的优势。通过3D感知框架成功的启动,利用3D稀疏疗卷积网络作为一种有效且高效的结构,从激光雷达点云的局部和全局上下文中提取几何特征。

(ii)鲁棒的遮挡感知深度监督。与现有工作类似,这里也使用激光雷达作为深度监督的来源,但更加深入。由于激光雷达点的稀疏性限制了其有效性,尤其是在低纹理区域,通过跨邻近帧集化激光雷达点来生成更密集的深度图。然而,这样获得的深度图没有考虑到遮挡,产生了错误的深度监督。因此,提出了一种健壮的深度监督方案,借用class学习的方式——从近场到远场逐步监督深度,并在NeRF训练过程中逐渐滤除错误的深度,从而更有效地从激光雷达中学习深度。

(iii)基于激光雷达的视图增强。此外,鉴于驾驶场景中的视图稀疏性和覆盖有限,利用激光雷达来密集化训练视图。也就是说,将累积的激光雷达点投影到新的训练视图中;请注意,这些视图可能与驾驶轨迹有一定的偏离。这些从激光雷达投影的视图被添加到训练数据集中,它们并没有考虑到遮挡问题。然而,我们应用了前面提到的监督方案来解决遮挡问题,从而提高了性能。虽然我们的方法也适用于一般场景,但在这项工作中更专注于街道场景的评估,并与现有技术相比,无论是定量还是定性,都取得了显著的改进。

LidaRF在需要更大程度偏离输入视图的有趣应用中也显示出优势,在具有挑战性的街道场景应用中显著提高了NeRF的质量。

LidaRF整体框架一览

LidaRF是一种用于输入和输出对应的密度和颜色的方法,它采用了UNet融合了哈夫编码和激光雷达编码。此外,通过激光雷达投影生成强化训练数据,使用提出的健壮深度监督方案训练几何预测。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

lidarf:研究用于街景神经辐射场的激光雷达数据(cvpr'24)

1)激光雷达编码的混合表示法

激光雷达点云具有强大的几何指导潜力,这对NeRF(神经渲染场)来说极具价值。然而,仅依赖激光雷达特征来进行场景表示,由于激光雷达点的稀疏性(尽管有时间累积),会导致低分辨率的渲染。此外,由于激光雷达的视野有限,例如它不能捕获超过一定高度的建筑物表面,因此在这些区域中会出现空白渲染。相比之下,本文的框架融合了激光雷达特征和高分辨率的空间网格特征,以利用两者的优势,并共同学习以实现高质量和完整的场景渲染。

激光雷达特征提取。在这里详细描述了每个激光雷达点的几何特征提取过程,参照图2,首先将整个序列的所有帧的激光雷达点云聚合起来,以构建更密集的点云集合。然后将点云体素化为体素网格,其中每个体素单元内的点的空间位置进行平均,为每个体素单元生成一个3维特征。受到3D感知框架广泛成功的启发,在体素网格上使用3D稀疏UNet对场景几何特征进行编码,这允许从场景几何的全局上下文中学习。3D稀疏UNet将体素网格及其3维特征作为输入,并输出neural volumetric 特征,每个被占用的体素由n维特征组成。

寻光 寻光

阿里达摩院寻光视频创作平台,以视觉AIGC为核心功能,用PPT制作的方式创作视频

寻光 70 查看详情 寻光

激光雷达特征查询。对于沿着要渲染的射线上的每个样本点x,如果在搜索半径R内有至少K个附近的激光雷达点,则查询其激光雷达特征;否则,其激光雷达特征被设置为空(即全零)。具体来说,采用固定半径最近邻(FRNN)方法来搜索与x相关的K个最近的激光雷达点索引集,记作。与[9]中在启动训练过程之前预先确定射线采样点的方法不同,本文的方法在执行FRNN搜索时是实时的,因为随着NeRF训练的收敛,来自region网络的样本点分布会动态地趋向于集中在表面上。遵循Point-NeRF的方法,我们的方法利用一个多层感知机(MLP)F,将每个点的激光雷达特征映射到神经场景描述中。对于x的第i个邻近点,F将激光雷达特征和相对位置作为输入,并输出神经场景描述作为:

LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR'24)

为了获得采样位置x处的最终激光雷达编码ϕ,使用标准的反距离权重法来聚合其K个邻近点的神经场景描述

LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR'24)

辐射解码的特征融合。将激光雷达编码ϕL与哈希编码ϕh进行拼接,并应用一个多层感知机Fα来预测每个样本的密度α和密度嵌入h。最后,通过另一个多层感知机Fc,根据观察方向d的球面谐波编码SH和密度嵌入h来预测相应的颜色c。

LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR'24)

2)鲁棒深度监督

除了特征编码外,还通过将激光雷达点投影到图像平面上来从它们中获取深度监督。然而,由于激光雷达点的稀疏性,所得益处有限,不足以重建低纹理区域,如路面。在这里,我们提出累积相邻的激光雷达帧以增加密度。尽管3D点能够准确地捕获场景结构,但在将它们投影到图像平面以进行深度监督时,需要考虑点之间的遮挡。遮挡是由于相机与激光雷达及其相邻帧之间的位移增加而产生的,从而产生虚假的深度监督,如图3所示。由于即使累积后激光雷达的稀疏性,处理这个问题也非常困难,使得诸如z缓冲之类的基本原理图形技术无法应用。在这项工作中,提出了一种鲁棒的监督方案,以在训练NeRF时自动过滤掉虚假的深度监督。

LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR'24)

遮挡感知的鲁棒监督方案。本文设计了一个class训练策略,使得模型最初使用更近、更可靠的深度数据进行训练,这些数据更不容易受到遮挡的影响。随着训练的进行,模型逐渐开始融合更远的深度数据。同时,模型还具备了丢弃与其预测相比异常遥远的深度监督的能力。

回想一下,由于车载摄像头的向前运动,它产生的训练图像是稀疏的,视野覆盖有限,这给NeRF重建带来了挑战,尤其是当新视图偏离车辆轨迹时。在这里,我们提出利用激光雷达来增强训练数据。首先,我们通过将每个激光雷达帧的点云投影到其同步的摄像头上并为RGB值进行插值来为其上色。累积上色的点云,并将其投影到一组合成增强的视图上,生成如图2所示的合成图像和深度图。

实验对比分析

LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR'24)

LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR'24)

LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR'24)

LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR'24)

LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR'24)

LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR'24)

以上就是LidaRF:研究用于街景神经辐射场的激光雷达数据(CVPR’24)的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/418021.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月7日 08:30:09
下一篇 2025年11月7日 08:30:40

相关推荐

  • 动态生成HTML表格:优化JavaScript数据展示与导出

    本文旨在解决JavaScript中动态生成HTML表格时遇到的代码冗余和样式控制难题。通过引入数据驱动的编程思想,我们将数据与视图逻辑分离,首先将表格内容组织为JavaScript对象数组,然后利用一个通用的函数将这些结构化数据渲染为可读性强、易于维护且支持灵活样式的HTML表格字符串。这种方法不仅…

    2025年12月23日
    000
  • HTML5性能优化怎么实现_HTML5新特性在性能优化方面的应用方法

    HTML5通过语义化标签、Web Storage、Canvas/SVG、Service Worker和原生媒体支持等技术提升性能:1. 语义化标签优化渲染效率;2. Web Storage减少网络请求;3. Canvas/SVG降低资源加载量;4. Service Worker实现离线缓存;5. 原…

    2025年12月23日
    000
  • 利用UTM参数与GTM优化链接点击来源追踪

    本文详细阐述了如何通过UTM参数精准追踪营销链接的点击来源,并深入探讨了Google Tag Manager (GTM) 在此过程中的高级应用。文章首先介绍了UTM参数的构成、生成方法及其在Google Analytics中的自动解析机制,强调其在识别流量来源方面的核心作用。随后,探讨了GTM如何通…

    2025年12月23日
    000
  • 如何通过HTML在线展示数据_HTML在线数据展示实现与可视化方案

    网页展示数据需结合HTML、CSS与JavaScript,首选table展示结构化数据,配合Chart.js等库实现可视化图表,通过fetch加载远程JSON动态渲染内容,并利用响应式设计与交互优化提升用户体验。 在网页中展示数据,核心是将结构化信息清晰、直观地呈现给用户。HTML本身是内容载体,结…

    2025年12月23日
    000
  • html在线几何图形绘制 html在线SVG应用实战教程

    使用HTML与SVG结合可高效绘制几何图形。SVG基于XML,支持圆形、矩形、多边形、路径等,在任意分辨率下清晰。1. 基础元素包括rect、circle、ellipse、line、polygon、polyline和path。2. 实战示例:用polygon绘制三角形,path绘制五角星和弧线仪表盘…

    2025年12月23日
    000
  • 单页应用(SPA)中特定分类数据的API直链访问与性能考量

    针对单页应用(SPA),本文探讨了如何通过URL直接访问特定分类数据,而非依赖客户端UI交互。文章揭示了SPA在初始加载时已获取所有数据,因此客户端分类选择对数据加载量无影响。核心策略是绕过前端界面,直接调用后端API获取所需数据,从而实现高效且精准的数据访问,并提供了具体API示例。 理解单页应用…

    2025年12月23日
    100
  • jQuery循环中动态表格数据访问与比较教程

    本文详细介绍了在jQuery循环中处理动态生成表格数据时常见的挑战与解决方案。我们将探讨如何正确使用.find()代替.children()来定位嵌套元素,解决.data()方法返回数字类型导致比较错误的问题,并提供一个基于事件监听的实用示例,以实现对用户修改数据的实时检测和保存。 动态表格数据处理…

    2025年12月22日
    000
  • 揭秘canvas技术在数据可视化中的独特威力

    发现Canvas技术在数据可视化中的独特作用 随着数据时代的到来,数据可视化成为了一种重要的方式来呈现大量的数据。在数据可视化中,Canvas技术以其独特的优势在各个领域展示了巨大的潜力。本文将着重介绍Canvas技术在数据可视化中的独特作用,并给出具体的代码示例。 Canvas是HTML5中的一个…

    好文分享 2025年12月21日
    000
  • 使用localstorage存储数据所需的包有哪些?

    localstorage是HTML5中的一项重要技术,它可以用来在客户端本地存储数据。在使用localstorage存储数据之前,我们需要确保在代码中引入合适的包来操作这个功能。 在使用localstorage之前,我们需要在HTML文件中添加以下代码来引入localstorage的相关包: 在以上…

    2025年12月21日
    000
  • 无法将数据保存到localstorage,为什么?

    为什么我的数据无法保存到localstorage中? 本文将详细讨论为何在某些情况下,数据无法保存到本地存储(localstorage)中。同时,我将提供一些具体的代码示例以帮助您解决这个问题。 首先,让我们来了解一下什么是localstorage。localstorage是HTML5中引入的一种W…

    2025年12月21日
    000
  • 如何将HTML表单数据作为文本并发送到html2pdf?

    html2pdf 是一个 JavaScript 包,允许开发人员将 html 转换为 canvas、pdf、图像等。它将 html 作为参数并将其添加到 pdf 或所需文档中。此外,它还允许用户在添加 html 内容后下载该文档。 在这里,我们将访问表单并使用html2pdf npm包将其添加到pd…

    2025年12月21日
    000
  • HTML中如何用post提交数据

    http/1.1 协议规定的 http 请求方法有 options、get、head、post、put、delete、trace、connect 这几种。其中 post 一般用来向服务端提交数据,本文主要讨论 post 提交数据的几种方式 http/1.1 协议规定的 http 请求方法有 opti…

    好文分享 2025年12月21日
    000
  • 服务端主动发送数据回客户端在H5里的实现步奏

    我们知道,在server sent event里,通过eventsource对象接收服务器发送事件的通知是有三个事件的,message, open, error这三种,今天就给大家演示一下服务端主动发送数据回客户端在h5里的实现步奏。 Server Sent Event Server Sent Ev…

    好文分享 2025年12月21日
    000
  • 可视化图表制作_javascript数据展示

    答案是使用JavaScript库如Chart.js、D3.js和ECharts可实现交互式数据可视化;其中Chart.js适合快速集成常见图表,D3.js适用于高度自定义的复杂图形,ECharts支持高级图表且中文文档完善;以Chart.js创建柱状图需引入库、添加canvas容器并初始化Chart…

    2025年12月21日
    000
  • Odoo 14 POS:深入理解订单与现金支付明细并高效调试

    本教程旨在指导odoo 14 pos开发者如何准确读取销售会话中的订单及其现金支付明细,并计算总现金支付金额。文章将详细介绍odoo前端数据模型的访问方法,并着重强调利用浏览器开发者工具和`debugger`关键字进行运行时对象结构检查与调试的最佳实践,帮助开发者高效解决数据访问中的常见问题。 Od…

    2025年12月21日
    000
  • Odoo 14 POS会话中现金支付金额的准确获取与调试指南

    针对odoo 14 pos会话中读取订单并计算现金支付总额的需求,本文将详细指导如何正确访问支付明细对象属性。重点介绍利用浏览器开发者工具设置断点进行实时调试的方法,帮助开发者深入理解数据结构,从而高效准确地实现功能,避免因属性名称不匹配而导致的常见问题。 1. 理解Odoo POS数据模型 在Od…

    2025年12月21日
    000
  • javascript_如何实现数据可视化

    JavaScript实现数据可视化需将数据转为图形,常用Chart.js、D3.js等库快速构建图表,或用Canvas/SVG原生绘图;通过fetch获取数据并动态更新视图,如Chart.js调用update()刷新,最终实现交互式可视化。 JavaScript 实现数据可视化,核心是将数据转换成图…

    2025年12月21日
    000
  • Ionic 应用在浏览器刷新时状态持久化策略

    当 ionic 应用在浏览器中被刷新时,浏览器会执行完整的页面重载,导致应用状态和数据丢失。本文旨在阐明为何无法阻止浏览器进行全面重载,并提供一个专业的解决方案:利用 capacitor preferences 等客户端存储机制来持久化关键应用状态和数据,确保在浏览器刷新后也能恢复应用到预期状态,从…

    2025年12月21日
    100
  • Node.js中高效移除文本文件中的制表符( )

    本文详细探讨了在node.js环境中从文本文件移除制表符(“)的有效方法。文章首先解释了为何常见的字符串替换尝试可能失败,强调了“和`t`在正则表达式中的区别。随后,提供了两种实用解决方案:直接使用正确正则表达式进行替换,以及通过按行处理数据实现更精细的控制。文章还包含了示例…

    2025年12月21日
    000
  • Google 饼图数据格式化:如何在切片值中显示百分比符号

    本文将详细介绍如何在 google 饼图的切片值和工具提示中正确显示百分比符号。通过利用 google charts 提供的 google.visualization.numberformat 类,开发者可以精确控制数值的显示格式,避免直接在后端数据库查询中进行字符串拼接,从而确保图表的正确渲染和数…

    2025年12月20日
    000

发表回复

登录后才能评论
关注微信