在少样本学习中,用SetFit进行文本分类

译者 | 陈峻

审校 | 重楼

在本文中,我将向您介绍“少样本(few-shot)学习”的相关概念,并重点讨论被广泛应用于文本分类的setfit方法。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

在少样本学习中,用SetFit进行文本分类

传统的机器学习(ML)

在监督(Supervised)机器学习中,大量数据集被用于模型训练,以便磨练模型能够做出精确预测的能力。在完成训练过程之后,我们便可以利用测试数据,来获得模型的预测结果。然而,这种传统的监督学习方法存在着一个显著缺点:它需要大量无差错的训练数据集。但是并非所有领域都能够提供此类无差错数据集。因此,“少样本学习”的概念应运而生。

在深入研究Sentence Transformer fine-tuning(SetFit)之前,我们有必要简要地回顾一下自然语言处理(Natural Language Processing,NLP)的一个重要方面,也就是:“少样本学习”。

少样本学习

少样本学习是指:使用有限的训练数据集,来训练模型。模型可以从这些被称为支持集的小集合中获取知识。此类学习旨在教会少样本模型,辨别出训练数据中的相同与相异之处。例如,我们并非要指示模型将所给图像分类为猫或狗,而是指示它掌握各种动物之间的共性和区别。可见,这种方法侧重于理解输入数据中的相似点和不同点。因此,它通常也被称为元学习(meta-learning)、或是从学习到学习(learning-to-learn)。

值得一提的是,少样本学习的支持集,也被称为k向(k-way)n样本(n-shot)学习。其中“k”代表支持集里的类别数。例如,在二分类(binary classification)中,k 等于 2。而“n”表示支持集中每个类别的可用样本数。例如,如果正分类有10个数据点,而负分类也有10个数据点,那么 n就等于10。总之,这个支持集可以被描述为双向10样本学习。

既然我们已经对少样本学习有了基本的了解,下面让我们通过使用SetFit进行快速学习,并在实际应用中对电商数据集进行文本分类。

SetFit架构

由Hugging Face和英特尔实验室的团队联合开发的SetFit,是一款用于少样本照片分类的开源工具。你可以在项目库链接–https://github.com/huggingface/setfit?ref=hackernoon.com中,找到关于SetFit的全面信息。

就输出而言,SetFit仅用到了客户评论(Customer Reviews,CR)情感分析数据集里、每个类别的八个标注示例。其结果就能够与由三千个示例组成的完整训练集上,经调优的RoBERTa Large的结果相同。值得强调的是,就体积而言,经微优的RoBERTa模型比SetFit模型大三倍。下图展示的是SetFit架构:

在少样本学习中,用SetFit进行文本分类

图片来源:https://www.php.cn/link/2456b9cd2668fa69e3c7ecd6f51866bf

用SetFit实现快速学习

SetFit的训练速度非常快,效率也极高。与GPT-3和T-FEW等大模型相比,其性能极具竞争力。请参见下图:

在少样本学习中,用SetFit进行文本分类SetFit与T-Few 3B模型的比较

如下图所示,SetFit在少样本学习方面的表现优于RoBERTa。

在少样本学习中,用SetFit进行文本分类

SetFit与RoBERT的比较,图片来源:https://www.php.cn/link/3ff4cea152080fd7d692a8286a587a67

数据集

下面,我们将用到由四个不同类别组成的独特电商数据集,它们分别是:书籍、服装与配件、电子产品、以及家居用品。该数据集的主要目的是将来自电商网站的产品描述归类到指定的标签下。

为了便于采用少样本的训练方法,我们将从四个类别中各选择八个样本,从而得到总共32个训练样本。而其余样本则将留作测试之用。简言之,我们在此使用的支持集是4向8样本学习。下图展示的是自定义电商数据集的示例:

在少样本学习中,用SetFit进行文本分类自定义电商数据集样本

我们采用名为“all-mpnet-base-v2”的Sentence Transformers预训练模型,将文本数据转换为各种向量嵌入。该模型可以为输入文本,生成维度为768的向量嵌入。

如下命令所示,我们将通过在conda环境(是一个开源的软件包管理系统和环境管理系统)中安装所需的软件包,来开始SetFit的实施。

!pip3 install SetFit !pip3 install sklearn !pip3 install transformers !pip3 install sentence-transformers

安装完软件包后,我们便可以通过如下代码加载数据集了。

from datasets import load_datasetdataset = load_dataset('csv', data_files={"train": 'E_Commerce_Dataset_Train.csv',"test": 'E_Commerce_Dataset_Test.csv'})

我们来参照下图,看看训练样本和测试样本数。

豆包爱学 豆包爱学

豆包旗下AI学习应用

豆包爱学 674 查看详情 豆包爱学

在少样本学习中,用SetFit进行文本分类训练和测试数据

我们使用sklearn软件包中的LabelEncoder,将文本标签转换为编码标签。

from sklearn.preprocessing import LabelEncoder le = LabelEncoder()

通过LabelEncoder,我们将对训练和测试数据集进行编码,并将编码后的标签添加到数据集的“标签”列中。请参见如下代码:

Encoded_Product = le.fit_transform(dataset["train"]['Label']) dataset["train"] = dataset["train"].remove_columns("Label").add_column("Label", Encoded_Product).cast(dataset["train"].features)Encoded_Product = le.fit_transform(dataset["test"]['Label']) dataset["test"] = dataset["test"].remove_columns("Label").add_column("Label", Encoded_Product).cast(dataset["test"].features)

下面,我们将初始化SetFit模型和句子转换器(sentence-transformers)模型。

from setfit import SetFitModel, SetFitTrainer from sentence_transformers.losses import CosineSimilarityLossmodel_id = "sentence-transformers/all-mpnet-base-v2" model = SetFitModel.from_pretrained(model_id)trainer = SetFitTrainer(  model=model, train_dataset=dataset["train"], eval_dataset=dataset["test"], loss_class=CosineSimilarityLoss, metric="accuracy", batch_size=64, num_iteratinotallow=20, num_epochs=2, column_mapping={"Text": "text", "Label": "label"})

初始化完成两个模型后,我们现在便可以调用训练程序了。

trainer.train()

在完成了2个训练轮数(epoch)后,我们将在eval_dataset上,对训练好的模型进行评估。

trainer.evaluate()

经测试,我们的训练模型的最高准确率为87.5%。虽然87.5%的准确率并不算高,但是毕竟我们的模型只用了32个样本进行训练。也就是说,考虑到数据集规模的有限性,在测试数据集上取得87.5%的准确率,实际上是相当可观的。

此外,SetFit还能够将训练好的模型,保存到本地存储器中,以便后续从磁盘加载,用于将来的预测。

trainer.model._save_pretrained(save_directory="SetFit_ECommerce_Output/")model=SetFitModel.from_pretrained("SetFit_ECommerce_Output/", local_files_notallow=True)

如下代码展示了根据新的数据进行的预测结果:

input = ["Campus Sutra Men's Sports Jersey T-Shirt Cool-Gear: Our Proprietary Moisture Management technology. Helps to absorb and evaporate sweat quickly. Keeps you Cool & Dry. Ultra-Fresh: Fabrics treated with Ultra-Fresh Antimicrobial Technology. Ultra-Fresh is a trademark of (TRA) Inc, Ontario, Canada. Keeps you odour free."]output = model(input)

可见,其预测输出为1,而标签的LabelEncoded值为“服装与配件”。由于传统的AI模型需要大量的训练资源(包括时间和数据),才能有稳定水准的输出。而我们的模型与之相比,既准确又高效。

至此,相信您已经基本掌握了“少样本学习”的概念,以及如何使用SetFit来进行文本分类等应用。当然,为了获得更深刻的理解,我强烈建议您选择一个实际场景,创建一个数据集,编写对应的代码,并将该过程延展到零样本学习、以及单样本学习上。

译者介绍

陈峻(Julian Chen)是51CTO社区的编辑,他在IT项目实施方面有十多年的经验,擅长管理内外部资源和风险,并专注于传播网络和信息安全的知识和经验

原文标题:Mastering Few-Shot Learning with SetFit for Text Classification,作者:Shyam Ganesh S)

以上就是在少样本学习中,用SetFit进行文本分类的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/457199.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月8日 01:56:04
下一篇 2025年11月8日 01:56:48

相关推荐

  • HTML数据如何用于机器学习 HTML数据预处理的特征工程方法

    首先解析HTML提取文本与元信息,再从结构、文本、样式三方面构建特征:1. 用BeautifulSoup等工具解析HTML,提取标题、正文、链接及属性;2. 统计标签频率、DOM深度、路径模式等结构特征;3. 清洗文本并采用TF-IDF或词嵌入向量化;4. 提取class、id、样式、脚本等交互与视…

    2025年12月23日
    000
  • 标题标签:你想知道的一切

    html,用于构建网页的语言,严重依赖于标头标签。它们用于排列和组织网页内容,使其更易于阅读和理解。标题标签范围从 h1 到 h6。 h1 是最重要的标题标签,而 h6 是最不重要的。这些标题标签有助于组织页面的内容,使其更易于阅读和导航。它们还用于告知用户和搜索引擎有关页面内容的信息,这对于 se…

    2025年12月21日
    000
  • 如何用机器学习算法优化前端用户交互体验?

    通过机器学习分析用户行为数据,可实现前端交互的个性化与自适应优化。1. 利用LSTM、XGBoost等模型预测用户操作,实现智能补全与实时推荐;2. 借助强化学习与聚类算法动态调整UI布局,提升操作效率;3. 使用孤立森林等无监督方法检测异常交互,优化流程设计;4. 通过时序模型预测页面跳转,结合S…

    2025年12月20日
    000
  • C++机器学习入门 线性回归实现示例

    首先实现线性回归模型,通过梯度下降最小化均方误差,代码包含数据准备、训练和预测,最终参数接近真实关系,适用于高性能场景。 想用C++实现线性回归,其实并不复杂。虽然Python在机器学习领域更常见,但C++凭借其高性能,在对效率要求高的场景中非常适用。下面是一个简单的线性回归实现示例,帮助你入门C+…

    2025年12月18日
    000
  • C++中如何构建机器学习框架_张量运算实现

    要构建高效的c++++机器学习框架张量运算模块,需遵循以下核心步骤:1. 设计支持泛型的tensor类,包含内存管理与基础接口;2. 实现运算符重载以简化加减乘除操作;3. 采用simd、多线程及缓存优化提升性能;4. 使用openmp实现并行化加法;5. 利用strassen或winograd算法…

    2025年12月18日 好文分享
    000
  • 怎样在C++中实现决策树_机器学习算法实现

    决策树在c++++中的实现核心在于通过递归构建树节点,使用“如果…那么…”逻辑进行数据分裂,最终实现分类或预测。1. 数据结构方面,定义包含特征索引、分裂阈值、左右子节点、叶子节点值及是否为叶子的treenode结构;2. 分裂准则包括信息增益(id3)、信息增益率(c4.5)和基尼指数(cart)…

    2025年12月18日 好文分享
    000
  • C++ lambda 表达式与闭包在机器学习中的应用

    在机器学习中,lambda 表达式和闭包用于数据预处理、特征工程、模型构建和闭包。具体应用包括:数据规范化等数据预处理操作。创建新特征或转换现有特征。向模型添加自定义的损失函数、激活函数等组件。利用闭包访问外部变量,用于计算特定特征的平均值等目的。 C++ Lambda 表达式与闭包在机器学习中的应…

    2025年12月18日
    000
  • 如何将C++框架与机器学习集成

    如何将 c++++ 框架与机器学习集成?选择 c++ 框架: eigen、armadillo、blitz++集成机器学习库: tensorflow、pytorch、scikit-learn实战案例:使用 eigen 和 tensorflow 构建线性回归模型 如何将 C++ 框架与机器学习集成 引言…

    2025年12月18日
    000
  • 如何将 C++ 框架与机器学习技术集成?

    集成 c++++ 框架和机器学习技术,以提高应用程序性能和功能:准备数据和模型:收集数据,训练模型并将其保存为 tensorflow lite 格式。集成 tensorflow lite:在 c++ 项目中包含 tensorflow lite 头文件和库。加载模型:从文件加载 tensorflow …

    2025年12月18日
    000
  • 如何将 C++ 框架与机器学习算法集成?

    在 c++++ 框架中集成机器学习算法的步骤: 1. 选择合适的 c++ 框架,如 armadillo 或 tensorflow。 2. 获取机器学习算法库,如 scikit-learn 或 xgboost。 3. 通过构建工具将算法库集成到框架中。 4. 从算法库加载算法。 5. 利用框架工具训练…

    2025年12月18日
    000
  • 如何将C++框架与机器学习库集成?

    将c++++框架与机器学习库集成可提供强大的开发基础。步骤如下:选择c++框架(如qt、mfc、boost)选择机器学习库(如tensorflow、pytorch、scikit-learn)创建c++项目集成机器学习库(按照库说明)使用框架和库编写c++代码编译、运行并测试应用程序 如何将 C++ …

    2025年12月18日
    000
  • C++框架在机器学习领域的应用

    c++++框架在机器学习中得到广泛应用,提供预构建组件和工具。流行框架包括:tensorflow c++ api:google开发,提供广泛的算子、层和架构。pytorch:facebook开发,支持动态图计算和易用的python界面。c++ builder:embarcadero开发,集成开发环境…

    2025年12月18日
    000
  • 支持人工智能和机器学习的C++框架

    c++++ 中的人工智能和机器学习框架包括:深度学习框架:tensorflow:谷歌开发,用于大型神经网络pytorch:facebook 开发,用于创建灵活的可读模型机器学习库:armadillo:高性能线性代数和统计计算nlp 工具包:natural language toolkit (nltk…

    2025年12月18日
    000
  • 如何将C++框架与机器学习工具集成?

    如何将 c++++ 框架与机器学习工具集成?设置 tensorflow 和 boost。编写接口,将 tensorflow 对象公开给 boost 代码。使用 boost.python 导出接口,允许从 python 代码调用 tensorflow 方法。在实战案例中,集成 boost c++ 扩展…

    2025年12月18日
    000
  • C++框架与机器学习和人工智能的契合度?

    c++++框架与机器学习和人工智能高度契合,提供高性能、效率和灵活性。tensorflow:一个开源端到端ml/ai框架,提供构建、训练和部署ml模型的工具,如计算图。pytorch:一个基于python的框架,支持动态计算图。xgboost:专注于梯度增强树的框架。cntk:一个微软开发的框架,用…

    2025年12月18日
    000
  • 开始使用 C++ 机器学习框架需要具备哪些技能?

    掌握 c++++ 机器学习框架需要以下核心技能:1. c++ 基础;2. 线性代数和统计的数学基础;3. 机器学习算法和模型;4. 选择并熟悉 c++ ml 框架。例如,使用 eigen 计算协方差矩阵:它创建了一个数据矩阵,计算协方差矩阵,并将其打印到控制台。 踏入 C++ 机器学习框架之旅的必备…

    2025年12月18日
    000
  • C++ 框架在人工智能和机器学习中的应用有什么前景?

    c++++ 框架在 ai/ml 中前景广阔,由于其高性能、内存效率和跨平台兼容性。流行的 c++ 框架包括 tensorflow lite、caffe2 和 scikit-learn。在实战案例中,tensorflow lite 用于图像分类,加载模型、创建解释器、预处理图像、执行推理和获取结果。 …

    2025年12月18日
    100
  • 哪种C++框架最适合用于机器学习和数据科学?

    对于机器学习和数据科学,最流行的 c++++ 框架包括:tensorflow:用于构建和训练机器学习模型pytorch:用于原型化和调试新模型xgboost:用于基于树的机器学习算法opencv:用于计算机视觉任务 探索用于机器学习和数据科学的顶级 C++ 框架 C++ 以其速度、效率和对复杂项目的…

    2025年12月18日
    000
  • 如何调试和解决 C++ 机器学习框架中的问题?

    调试和解决 c++++ 机器学习框架中的问题的步骤:使用调试器(例如 gdb 或 lldb)。检查日志文件以查找错误消息。使用断言来检查条件。打印调试信息以输出变量值。分析异常消息和堆栈跟踪。 如何调试和解决 C++ 机器学习框架中的问题 调试 C++ 机器学习框架中的问题可能是一个挑战,因为它涉及…

    2025年12月18日
    000
  • C++ 机器学习框架的最佳实践和设计模式有哪些?

    c++++ 机器学习框架的最佳实践包括:抽象化和接口隔离依赖关系和松散耦合高内聚和低耦合测试驱动开发设计模式(如工厂方法、单例模式和观察者模式) C++ 机器学习框架的最佳实践和设计模式 机器学习算法在现代软件开发中发挥着至关重要的作用。许多 C++ 框架可用于开发机器学习模型,例如 TensorF…

    2025年12月18日
    000

发表回复

登录后才能评论
关注微信