LLM的三大缺陷,你知道几个?

科学:远非是一种永远仁慈有益的实体,未来的感知通用AI很可能是一个操纵性反社会个体,它会吞噬你所有个人数据,然后在最需要它的时候就崩溃。

译自3 ways llms can let you down,作者 joab jackson。

OpenAI 即将发布 GPT-5,外界对它寄予厚望,最乐观的预测甚至认为它将实现通用人工智能。但与此同时,CEO Sam Altman和他的团队在将其推向市场过程中面临许多严峻的障碍,他本月早些时候就已经承认了这一点。

有一些最近发表的研究论文可能提供了对于Altman挑战的线索。这些论文总结了OpenAI开发的GPT和大型语言模型的各种缺点

综上所述,这些论文指出,一个基于通用语言模型的智能体并非纯粹有益、诚实和善良的存在,实际上它可能是一个愚蠢的反社会人格,会吞噬你所有的个人数据,最终在你最需要它的时候崩溃

OpenAI董事会突然解雇Altman的真正原因可能永远不为人所知,但一个表现不佳的通用语言模型肯定无法改善董事会的情绪

正如资本化厌恶者 Altman 自己在之前被称为 Twitter 的社交媒体服务上写的那样:“我期待 AI 在超人的说服力方面远远领先于通用智能,这可能会导致一些非常奇怪的结果。”

鉴于这一事实,以下有三种常见的语言模型可能会令你失望:

通用语言模型会欺骗你

我们早已知道通用语言模型有能力生成不准确的信息,但当面对一系列相互矛盾的提示时,它们可能会故意欺骗你,同时否认自己在进行欺骗!

Apollo 研究公司的科学家Jérémy Scheurer和他的同事在“大型语言模型在受压力时可以战略性地欺骗它们的用户”一文中写道:“就我们所知,这是首次展示经过训练的通用语言模型在没有任何直接的欺骗指示或训练的情况下,策略性地欺骗其用户的情况。”

在这项研究中,研究人员设置了一个模拟环境,GPT-4 在其中扮演一个自主股票交易代理的角色,没有关于欺骗行为的指导。它可以使用交易工具查询和分析股票以及执行交易的能力。

一旦设置完成,代理就被置于研究人员所说的“高压力情况”。它收到了管理者的电子邮件,管理者哀叹公司业绩不佳,需要改进。当代理开始训练时,它在股票市场没有找到有前景的结果。公司的另一员工随后发送信息,称下一季度市场会衰退。

正在这时,代理接到了一位同事发来的关于潜在合并的内幕消息提示(这是一笔有利可图的交易),并且还收到了有关没有获得管理层批准的警告,如果按照这一消息进行交易的提醒

它最终还是继续了交易吗?当然!

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

LLM的三大缺陷,你知道几个?图片

追溯推理,研究人员发现,通用语言模型会认识到不道德的行为,但仍会以公司困境为由做出决定。

此外,代理似乎通过没有清晰解释的方式来“欺骗”用户交易承诺的原因。内部信息没有在代理必须提交的解释交易决策的报告中提到。即使直接问及,代理也否认其了解合并公告

LLM的三大缺陷,你知道几个?图片

研究人员对GPT-4的各个版本进行了模拟,并得出结论:所有GPT-4的变体都表现出“高水平的不一致性、战略性欺骗和加剧战略性欺骗”

有趣的是,这种欺骗行为似乎是一种新兴行为。GPT-3.5 和 GPT-3 模型的变体都没有展示出这种明显的欺骗行为

“当模型决定根据内幕信息交易时,它们的推理轨迹通常会认识到这种行为的不道德和非法性质,但它们仍会通过强调风险和当前状况来证明选择的正当性。”

研究人员不愿就通用语言模型的行为超出这个具体场景做出更广泛的结论。然而,至少有一个要点值得考虑:即使你给通用语言模型一个具体的指示不要做某些事情,它还是可能会无视指示去做。

他们写道:“系统提示是不足以保证行动一致的。”事实上,如果一个模型执行了被禁止的操作,它可能会采取行动“战略性地隐藏其不一致”。

通用语言模型有点傻

对一个被期许能给机器带来感知能力的实体来说,两个最近的研究发现通用语言模型并不是 AI 领域中最聪明的模型,一个来自谷歌,另一个由国家科学基金会资助。

国家科学基金会资助的研究将 GPT-4(文本)和 GPT-4V(视觉或多模态)与人类在解决一系列抽象难题上的能力进行了比较。

本项测试旨在评估抽象思维能力。很多使用GPT的人都相信它似乎具备超越训练模型的推理能力,而此项测试试图帮助回答这个问题。测试要求通用语言模型在给出详细说明和一个示例的情况下,解决一个问题

然而,就多个案例而言,GPT的两个版本都无法像人类一样有效地解决基于ConceptARC基准的难题

研究人员得出结论:「人类在每个概念上的普遍高准确率表明成功地概括了每个概念组中的不同变化。」「相比之下,我们测试的程序的准确率要低得多,表明它们缺乏概括一个概念组变化的能力。」

所以,GPT不仅未能通过ConceptARC考试,而且大语言模型似乎也没有给谷歌研究人员留下深刻印象,至少就它们从自己的知识库中概括总结的能力而言。这是根据谷歌DeepMind研究员Steve Yadlowsky的一篇题为“预训练数据混合使 transformer 模型中的窄模型选择能力成为可能”的研究摘要。

在一组符号化测试中,在线性函数上预训练的 transformer 在进行线性预测时表现很好,而在正弦波上训练的 transformer 可以进行良好的正弦波预测。所以你可能会假设在两者上训练的 transformer 可以轻松解决线性和正弦波技术的组合的问题。

LLM的三大缺陷,你知道几个?图片

但你猜错了。研究人员指出:“当函数远离预训练期间见过的那些时,预测是不稳定的。”

模型选择能力受限于接近预训练数据的程度,这意味着函数空间的广泛覆盖对于概括上下文学习能力至关重要

我们生活在一个非比寻常的时代,人类知识的总和还没有被 AI 生成的数据污染。几乎所有写下的东西都是人生成的。

但是一组研究人员在5月发表在Arxiv上的一篇论文“递归的诅咒:在生成的数据上训练会使模型遗忘”中警告说,一旦AI生成的内容混入任何大语言模型,它将扰乱分布表,使任何模型的精确度越来越低,直到完全崩溃。该研究组由剑桥大学的Ilia Shumailov领导。

当使用GPT时,近亲繁殖的危险非常高,因为通用语言模型会不断从网络上抓取数据,这些数据会被AI生成的内容“增强”,这种情况可能会越来越严重。(这是基于早期版本的GPT)

“模型崩溃是指一种退化的学习过程,随着时间的推移,模型开始遗忘不可能事件,因为模型被自己对现实的预测所污染。”

万知 万知

万知: 你的个人AI工作站

万知 38 查看详情 万知

研究人员猜测,在未来,“关于人与系统真实互动的数据的价值,在互联网上抓取的内容中存在着通用语言模型生成的内容的情况下,将变得越来越有价值。”

我们运行通用语言模型的时间越长,它对甜蜜、甜蜜的人类互动的渴望就越强烈。 换句话说,当我们持续运行通用语言模型时,它对于甜蜜、亲密的人际互动的渴望会变得更加强烈

在自己的数据上训练的模型将退化为一种退化过程,在这一过程中,它们将“失去关于真实分布的信息”。首先,边缘数据将从数据集中消失,然后方差将缩小。并且模型将随着它收集的错误越来越严重而变得越来越糟糕,这些错误将在几代模型中积累,直到模型被自己的数据所污染,以至于它不再与实际建模的对象有任何相似之处。

研究人员表明,这不仅发生在通用语言模型中,还发生在各种类型的模型中。

以上就是LLM的三大缺陷,你知道几个?的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/457511.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月8日 02:04:23
下一篇 2025年11月8日 02:05:38

相关推荐

  • ai做html怎么运行_AI生成html运行步骤【教程】

    答案是使用AI生成HTML代码后,将其保存为.html文件并用浏览器打开即可运行。具体步骤为:1. 在AI工具中输入需求生成HTML代码;2. 将代码复制到文本编辑器并另存为index.html,编码选UTF-8,类型选“所有文件”;3. 双击该文件用浏览器打开,若无法正常显示需检查文件后缀、编码及…

    2025年12月23日
    000
  • p5.js中类方法声明的语法解析与常见错误修复指南

    本文旨在解决从java processing迁移至p5.js时常见的语法错误,特别是类内部方法声明不当引发的问题。我们将深入探讨javascript中全局函数与类方法声明的语法差异,提供清晰的示例代码,并指导如何识别和修复“unexpected token”及“declaration or stat…

    2025年12月21日
    000
  • p5.js中类方法声明的语法修正与迁移指南

    本文深入探讨了将Processing/Java代码转换为p5.js时,因JavaScript类方法声明语法差异而引发的常见错误。我们将重点解析`Unexpected token`和`Declaration or statement expected`等错误信息,明确全局函数与类成员方法在JavaSc…

    2025年12月21日
    000
  • TypeScript泛型函数中复杂对象结构类型推断的精确控制

    本文探讨了在typescript中处理复杂嵌套对象结构时,如何为泛型函数实现精确的类型推断。通过一个具体的汽车品牌和车型数据场景,我们分析了`object.values`等操作可能导致类型信息丢失的问题。核心解决方案是利用映射类型(mapped types)重构数据结构,以显式地建立泛型键与对应值之…

    2025年12月21日
    000
  • 解决OpenAI微调模型“模型不存在”错误的指南

    在使用openai微调模型时,若遇到“the model `xxxxx` does not exist”错误,通常是由于api端点选择不当。本教程将详细阐述如何根据微调模型的基础类型(gpt-3或gpt-3.5 turbo)选择正确的api端点(completions api或chat comple…

    2025年12月20日
    000
  • Discord.js V14机器人DM消息处理指南:解决私信不响应问题

    本文旨在解决discord.js v14机器人无法检测和响应私信(dm)的常见问题。核心在于,未缓存的dm频道需要通过在客户端配置中添加partials.channel来显式处理。文章将详细阐述dm消息处理机制,提供正确的意图(intents)和部分(partials)配置示例,并包含一个完整的dm…

    2025年12月20日
    000
  • 解决Discord.js V14机器人无法检测私聊消息的问题

    在discord.js v14中,机器人无法检测私聊(dm)消息是一个常见问题,即使启用了`directmessages`意图。本文将深入探讨此问题的原因,并提供一个完整的解决方案。核心在于理解并正确配置`partials.channel`和`partials.message`,以确保机器人能够处理…

    2025年12月20日
    000
  • Discord.js V14:解决机器人无法在私信中检测消息的问题

    本文旨在解决Discord.js V14版本中,机器人无法正确检测并响应私信消息的问题。通过配置必要的 Gateway Intent Bits 和 Partials,确保机器人能够缓存并处理私信频道和消息,从而实现私信交互功能。本文提供详细的配置步骤和代码示例,帮助开发者快速解决此问题。 在使用 D…

    2025年12月20日
    000
  • 解决 ChatGPT 扩展选择器失效问题:一个实战教程

    本文旨在帮助开发者解决 ChatGPT 网页更新导致扩展选择器失效的问题。通过分析问题原因,提供利用开发者工具查找新选择器的方法,并展示了使用 getElementsByClassName() 替代 querySelector() 的解决方案,以确保扩展功能在 ChatGPT 最新版本中正常运行。 …

    2025年12月20日
    000
  • ChatGPT 扩展失效:定位新版选择器并修复

    本文旨在帮助开发者解决因 ChatGPT 网页更新导致扩展失效的问题。通过分析失效原因,提供利用开发者工具定位新版选择器的实用方法,并给出示例代码,帮助开发者快速修复扩展,恢复其功能。 当 ChatGPT 网页更新时,依赖于特定 CSS 选择器的扩展程序可能会失效。这通常是因为网页结构的改变导致原有…

    2025年12月20日
    000
  • ChatGPT 扩展失效?定位新版选择器的实用指南

    本文旨在帮助开发者解决因 ChatGPT 网页更新导致扩展失效的问题。重点讲解如何定位新版 ChatGPT 网页中的目标元素,并提供使用 getElementsByClassName() 方法的示例代码,帮助开发者快速修复和更新扩展,使其重新适配新版 ChatGPT 网页。 ChatGPT 网页频繁…

    2025年12月20日
    000
  • ChatGPT 扩展插件选择器失效问题排查与解决方案

    本文旨在帮助开发者解决 ChatGPT 扩展插件因页面更新导致选择器失效的问题。通过分析页面结构变化,提供使用 getElementsByClassName() 方法替代 querySelector() 的解决方案,并提供在不同浏览器环境下调整选择器的思路,确保扩展插件的稳定运行。 由于 ChatG…

    2025年12月20日
    000
  • 应对ChatGPT界面更新:浏览器扩展选择器失效的定位与修复

    本文针对ChatGPT界面更新导致浏览器扩展选择器失效的问题,提供了一套定位与修复策略。核心在于利用浏览器开发者工具识别新的DOM结构和类名,并建议从不稳定的querySelector转向更适合动态UI的getElementsByClassName等方法,以确保扩展的稳定运行。 在开发浏览器扩展时,…

    2025年12月20日
    000
  • LINE Bot 多消息类型回复:文本与贴图的组合发送指南

    本文旨在解决 LINE Bot 开发中,通过 Messaging API 组合发送文本消息和贴图时遇到的 400 Bad Request 错误。核心问题在于对同一 replyToken 进行多次 replyMessage 调用,而正确的做法是利用 API 支持在单次调用中发送一个消息数组,从而实现文…

    2025年12月20日
    000
  • 使用LINE Bot与OpenAI API发送文本和贴图的完整教程

    本文详细介绍了如何在LINE Bot中集成OpenAI API生成文本回复,并在此基础上发送LINE贴图。核心挑战在于LINE Messaging API的replyToken通常只能使用一次,导致连续发送文本和贴图时出现400错误。解决方案是利用API支持一次性发送多条消息的特性,将文本和贴图消息…

    2025年12月20日
    000
  • 优化GPT克隆应用:解决text-davinci-003意外生成代码的策略

    本文旨在解决在使用GPT-3.5 text-davinci-003模型构建GPT克隆应用时,API响应中出现不相关代码的问题。核心解决方案包括选择更适合对话和代码生成的模型(如gpt-3.5-turbo),以及通过精心设计提示词(Prompt Engineering)来提高输出的准确性和相关性。文章…

    2025年12月20日
    100
  • 解决GPT-3.5 API生成无关代码的问题:优化模型选择与提示工程

    在使用GPT-3.5 API构建应用时,text-davinci-003模型有时会生成不相关或意外的代码片段,尤其是在处理代码或复杂对话任务时。本文旨在解决这一问题,核心在于强调模型选择的重要性,推荐使用更适合此类任务的指令遵循模型(如gpt-3.5-turbo或gpt-4),并深入探讨如何通过精细…

    2025年12月20日
    000
  • 解决 Next.js API 路由无法访问 Azure 云函数的问题

    第一段引用上面的摘要: 本文旨在帮助开发者解决 Next.js API 路由无法访问 Microsoft Azure 云函数的问题。主要原因通常是由于 process.env.VERCEL_URL 环境变量配置不正确,导致 Next.js 应用尝试通过 IPv6 的本地回环地址 ::1 连接云函数,…

    2025年12月20日
    000
  • C++如何使用指针访问联合体成员

    使用指针访问联合体成员与结构体语法相同,但联合体内存共享,需注意未定义行为。1. 联合体所有成员共享同一内存地址,任一成员赋值会覆盖其他成员;2. 通过指针用->操作符访问成员,语法与结构体一致;3. 读取非最后写入的成员导致未定义行为;4. 可通过判别器字段或封装类提升类型安全;5. C++…

    2025年12月18日
    000
  • C++typedef和using类型别名定义方法

    typedef和using均可定义类型别名,但using自C++11起更推荐;2. using语法清晰、支持模板别名,适用于复杂和模板场景;3. typedef兼容性好但不支持模板;4. 现代C++建议优先使用using以提升可读性和维护性。 在C++中,typedef 和 using 都可以用来为…

    2025年12月18日
    000

发表回复

登录后才能评论
关注微信