该项目是对联生成系统的升级版本,从简单界面可视化升级为Android APP。项目用Seq2seq框架,先处理对联数据,建立语料库和字典,划分数据集并封装。接着搭建Encoder、AttentionLayer等网络组件,定义损失函数和超参数后训练模型。还涉及模型预测及动态图转静态图,最后进行Android开发,生成opt模型并编写相关代码实现功能。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

项目简介
该项目是我之前精品项目使用Seq2seq框架搭建对联生成系统的升级版本。在之前的项目中,我仅实现了简单的界面可视化,现在升级到了Android APP,嘿嘿!
安卓代码及APP下载地址:点我
APP界面如下图所示:
In [1]
import ioimport osimport numpy as npimport paddleimport paddlenlpfrom functools import partialfrom paddle.static import InputSpec
1.数据处理
In [2]
data_in_path="/home/aistudio/data/data110057/fixed_couplets_in.txt"data_out_path="/home/aistudio/data/data110057/fixed_couplets_out.txt"
In [3]
def openfile(src): with open(src,'r',encoding="utf-8") as source: lines=source.readlines() return lines
In [4]
data_in=openfile(data_in_path)data_out=openfile(data_out_path)
In [5]
print(len(data_in))print(len(data_out))print(data_in[0])print(data_out[0])print(len(data_in[0]))
744915744915腾 飞 上 铁 , 锐 意 改 革 谋 发 展 , 勇 当 千 里 马 和 谐 南 供 , 安 全 送 电 保 畅 通 , 争 做 领 头 羊 37
In [6]
def delete_newline_and_space(lista): newlist=[] for i in range(len(lista)): newlist.append([""]+lista[i].strip().split()+['']) return newlist
In [7]
data_in_nospace=delete_newline_and_space(data_in)data_out_nospace=delete_newline_and_space(data_out)print(data_in_nospace[0])print(data_out_nospace[0])
['', '腾', '飞', '上', '铁', ',', '锐', '意', '改', '革', '谋', '发', '展', ',', '勇', '当', '千', '里', '马', '']['', '和', '谐', '南', '供', ',', '安', '全', '送', '电', '保', '畅', '通', ',', '争', '做', '领', '头', '羊', '']
计算最长的对联长度couplet_maxlen,并将该长度+2作为向量长。不足进行填充。
In [8]
couplet_maxlen=max([len(i) for i in data_in_nospace])couplet_maxlen
34
1.1 建立语料库、字符转id的字典和id转字符的字典
字符主要指的是汉字,当然还有标点
有个问题: 输入输出的语料库是二者分别建立一个,还是二者一起建立一个?
在这里建立一个统一的语料库进行实验。(毕设的时候我是分开建的,不知道哪个做法正确)
In [9]
def bulid_cropus(data_in,data_out): crpous=[] for i in data_in: crpous.extend(i) for i in data_out: crpous.extend(i) return crpous
In [10]
def build_dict(corpus,frequency): # 首先统计不同词(汉字)的频率,使用字典记录 word_freq_dict={} for ch in corpus: if ch not in word_freq_dict: word_freq_dict[ch]=0 word_freq_dict[ch]+=1 # 根据频率对字典进行排序 word_freq_dict=sorted(word_freq_dict.items(),key=lambda x:x[1],reverse=True) word2id_dict={} id2word_dict={} # 按照频率,从高到低,开始遍历每个单词,并赋予第一无二的 id for word,freq in word_freq_dict: if freq>frequency: curr_id=len(word2id_dict) word2id_dict[word]=curr_id id2word_dict[curr_id]=word else: # else 部分在 使 单词 指向unk,对于汉字,我们不设置unk,令frequency=0 word2id_dict[word]=1 return word2id_dict,id2word_dict
In [11]
word_frequency=0word2id_dict,id2word_dict=build_dict(bulid_cropus(data_in_nospace,data_out_nospace),word_frequency)
词汇量大小
In [12]
word_size=len(word2id_dict)id_size=len(id2word_dict)print("汉字个数:",word_size,"n id个数:",id_size)
汉字个数: 9017 id个数: 9017
In [13]
with open("word2id.txt",'w',encoding='utf-8') as w2i: for k,v in word2id_dict.items(): w2i.write(str(k)+","+str(v)+'n')with open("id2word.txt",'w',encoding='utf-8') as w2i: for k,v in id2word_dict.items(): w2i.write(str(k)+","+str(v)+'n')
In [14]
print(word2id_dict[''])print(word2id_dict[''])
10
创建 tensor
In [15]
def getensor(w2i,datalist,maxlength): in_tensor=[] for lista in datalist: in_samll_tensor=[] for li in lista: in_samll_tensor.append(w2i[li])# if len(in_samll_tensor)<maxlength:# in_samll_tensor+=[w2i['']]*(maxlength-len(in_samll_tensor)) in_tensor.append(in_samll_tensor) return in_tensor
In [16]
in_tensor=getensor(word2id_dict,data_in_nospace,couplet_maxlen)out_tensor=getensor(word2id_dict,data_out_nospace,couplet_maxlen)
转成数字,带上shape属性
In [17]
in_tensor=np.array(in_tensor)out_tensor=np.array(out_tensor)
1.2 划分训练集、验证集、测试集 ,按照8:1:1 固定划分
In [18]
train_in_tensor=in_tensor[:595933]val_in_tensor=in_tensor[595933:670424]test_in_tensor=in_tensor[670424:]train_out_tensor=out_tensor[:595933]val_out_tensor=out_tensor[595933:670424]test_out_tensor=out_tensor[670424:]
In [19]
print(len(train_in_tensor),len(test_in_tensor),len(val_in_tensor))
595933 74491 74491
1.3 封装数据集为可直接进行训练的dataset
In [20]
# 1.继承paddle.io.Datasetclass Mydataset(paddle.io.Dataset): # 2. 构造函数,定义数据集大小 def __init__(self,first,second): super(Mydataset,self).__init__() self.first=first self.second=second # 3. 实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签) def __getitem__(self,index): return self.first[index],self.second[index] # 4. 实现__len__方法,返回数据集总数目 def __len__(self): return self.first.shape[0]
In [21]
train_tensor=Mydataset(train_in_tensor,train_out_tensor)val_tensor=Mydataset(val_in_tensor,val_out_tensor)test_tensor=Mydataset(test_in_tensor,test_out_tensor)
数据加载
In [22]
BATCH_SIZE=64padid=word2id_dict['']
In [23]
def prepare_input(inputs,padid): src,src_length=paddlenlp.data.Pad(pad_val=padid,ret_length=True)([inputsub[0] for inputsub in inputs]) trg,trg_length=paddlenlp.data.Pad(pad_val=padid,ret_length=True)([inputsub[1] for inputsub in inputs]) #src=src.astype(paddle.get_default_dtype()) trg_mask =(trg[:,:-1]!=padid).astype(paddle.get_default_dtype()) return src,src_length,trg[:,:-1],trg[:,1:,np.newaxis],trg_mask
In [24]
def create_data_loader(dataset): data_loader=paddle.io.DataLoader(dataset,batch_sampler=None,batch_size=BATCH_SIZE,collate_fn=partial(prepare_input, padid=padid)) return data_loader
In [25]
train_loader=create_data_loader(train_tensor)val_loader=create_data_loader(val_tensor)test_loader=create_data_loader(test_tensor)
In [26]
# j=0# for i in train_loader:# print(len(i))# for ind,each in enumerate(i):# print(ind,each.shape,each)# #print(ind,each.shape)# j+=1# if j==2:# break
In [ ]
In [27]
# for i in train_loader:# x,x_length,y,_,_= i# break# # print(x)
2.网络搭建
主要参考的是官方的项目,直达:https://aistudio.baidu.com/aistudio/projectdetail/1321118?shared=1
2.1 Encoder
In [28]
class Encoder(paddle.nn.Layer): def __init__(self,vocab_size,embedding_dim,hidden_size,num_layers): super(Encoder,self).__init__() self.embedding=paddle.nn.Embedding(vocab_size,embedding_dim) self.lstm=paddle.nn.LSTM(input_size=embedding_dim, hidden_size=hidden_size, num_layers=num_layers, dropout=0.2 if num_layers>1 else 0) # src_length 的形状为[batch_size],作用是控制inputs中的time_step超过[batch_size]的不再更新状态,就是那些填充 def forward(self,src,src_length): inputs=self.embedding(src) # [batch_size,time_steps,embedding_dim] encoder_out,encoder_state=self.lstm(inputs,sequence_length=src_length) # out[batch_szie,time_steps,hidden_size] state:[[num_layers*1,batch_size,hidden_size],[num_layers*1,batch_size,hidden_size]] # encoder_out,encoder_state=self.lstm(inputs) return encoder_out,encoder_state
In [29]
# encoder=Encoder(word_size,256,128,2)# #paddle.summary(encoder,[(64,18),(64)],dtypes='int64')# out,state=encoder(x,x_length)# print(out.shape)# print(state)
2.2 注意力层
In [30]
class AttentionLayer(paddle.nn.Layer): def __init__(self,hidden_size): super(AttentionLayer,self).__init__() self.attn1=paddle.nn.Linear(hidden_size,hidden_size) self.attn2=paddle.nn.Linear(hidden_size+hidden_size,hidden_size) def forward(self,decoder_hidden_h,encoder_output,encoder_padding_mask): encoder_output=self.attn1(encoder_output) # [batch_size,time_steps,hidden_size] # decodr_hidden_h 的形状 [batch_size,hidden_size],是lstm公式中的ht. # unsqueeze之后[batch_size,1,hidden_size] # transpose_y=True,后两维转置 [batch_size,hidden_size,time_steps] # matmul之后的 形状 [batch_size,1,time_steps] a=paddle.unsqueeze(decoder_hidden_h,[1]) # print(a.shape) # print(encoder_output.shape) attn_scores=paddle.matmul(a,encoder_output,transpose_y=True) # 注意力机制中增加掩码操作,在padding 位加上个非常小的数:-1e9 if encoder_padding_mask is not None: # encoder_padding_mask的形状为[batch_size,1,time_steps] attn_scores=paddle.add(attn_scores,encoder_padding_mask) # softmax操作,默认是最后一个维度,axis=-1,形状不变 attn_scores=paddle.nn.functional.softmax(attn_scores) # [batch_size,1,time_steps]*[batch_size,time_steps,hidden_size]-->[batch_size,1,hidden_size] # squeeze之后:[batch_size,hidden_size] attn_out=paddle.squeeze(paddle.matmul(attn_scores,encoder_output),[1]) # concat之后 [batch_size,hidden_size+hidden_size] attn_out=paddle.concat([attn_out,decoder_hidden_h],1) # 最终结果[batch_size,hidden_size] attn_out=self.attn2(attn_out) return attn_out
2.3 解码器单元
In [31]
class DecoderCell(paddle.nn.RNNCellBase): def __init__(self,num_layers,embedding_dim,hidden_size): super(DecoderCell,self).__init__() self.dropout=paddle.nn.Dropout(0.2) self.lstmcells=paddle.nn.LayerList([paddle.nn.LSTMCell( input_size=embedding_dim+hidden_size if i==0 else hidden_size, hidden_size=hidden_size ) for i in range(num_layers)]) self.attention=AttentionLayer(hidden_size) def forward(self,decoder_input,decoder_initial_states,encoder_out,encoder_padding_mask=None): #forward 函数会执行squence_len次 ,每次的decoder_input 为[batch_size,embeddding_dim] # 状态分解 states [encoder_final_states,decoder_init_states] # encoder_final_states [num_layes,batch_size,hiden_size] ??? # decoder_init_states [] ??? encoder_final_states,decoder_init_states=decoder_initial_states #num_layers=len(encoder_final_states[0]) #decoder_init_states=lstm_init_state # ??? new_lstm_states=[] # decoder_input: [batch_size,embedding_dim] # print("decodercell ",decoder_input.shape) inputs=paddle.concat([decoder_input,decoder_init_states],1) # print("concant之后",inputs.shape) for i ,lstm_cell in enumerate(self.lstmcells): # inputs 的形状为 [batch_size,input_size] input_size:输入的大小 state_h,new_lstm_state=lstm_cell(inputs,encoder_final_states[i]) inputs=self.dropout(state_h) new_lstm_states.append(new_lstm_state) state_h=self.attention(inputs,encoder_out,encoder_padding_mask) # print(state_h.shape) return state_h,[new_lstm_states,state_h]
2.4 解码器
解码器由embedding+解码器单元+线性输出层组成
In [32]
class Decoder(paddle.nn.Layer): def __init__(self,vocab_size,embedding_dim,hidden_size,num_layers): super(Decoder,self).__init__() self.embedding=paddle.nn.Embedding(vocab_size,embedding_dim) self.lstm_attention=paddle.nn.RNN(DecoderCell(num_layers,embedding_dim,hidden_size)) self.fianl=paddle.nn.Linear(hidden_size,vocab_size) def forward(self,trg, decoder_initial_states,encoder_output,encoder_padding_mask): # trg 的形状为 [batch_size,sequence_length] # embedding 之后, [batch_size,sequence_length,embedding_dim] inputs=self.embedding(trg) # print("embedding 后的 输入维度",inputs.shape) # decodr_out [batch_szie,hidden_size] decoder_out,_ = self.lstm_attention(inputs, initial_states=decoder_initial_states, encoder_out=encoder_output, encoder_padding_mask=encoder_padding_mask) # predict [batch_size,sequence_len,word_size] predict=self.fianl(decoder_out) # print("最后的维度",decoder_out.shape) return predict
2.5 组装Seq2Seq
In [33]
class Seq2Seq(paddle.nn.Layer): def __init__(self, vocab_size,embedding_dim,hidden_size,num_layers,eos_id): super(Seq2Seq,self).__init__() self.hidden_size=hidden_size self.eos_id=eos_id self.num_layers=num_layers self.INF= 1e9 self.encoder=Encoder(vocab_size,embedding_dim,hidden_size,num_layers) self.decoder=Decoder(vocab_size,embedding_dim,hidden_size,num_layers) def forward(self,src,src_length,trg): # encoder_output 的形状为[batch_size,sequence_len,hidden_size] # encoder_final_state ([num_layers*1,batch_size,hidden_size],[num_layers*1,batch_size,hidden_size]]) tuple类型 encoder_output,encoder_final_state=self.encoder(src,src_length) encoder_final_states=[(encoder_final_state[0][i],encoder_final_state[1][i]) for i in range(self.num_layers)] #print(encoder_final_states[0]) # [batch_size,hidden_size] 初始化为0 #lstm_init_state= self.decoder.lstm_attention.cell.get_initial_states(batch_ref=encoder_output,shape=[self.hidden_size]) decoder_initial_states=[encoder_final_states, self.decoder.lstm_attention.cell.get_initial_states(batch_ref=encoder_output,shape=[self.hidden_size])] src_mask=(src!=self.eos_id).astype(paddle.get_default_dtype()) encoder_mask=(src_mask-1)*self.INF encoder_padding_mask=paddle.unsqueeze(encoder_mask,[1]) predict=self.decoder(trg,decoder_initial_states,encoder_output,encoder_padding_mask) return predict
2.6 自定义交叉熵损失函数及超参数
In [34]
class CrossEntropy(paddle.nn.Layer): def __init__(self): super(CrossEntropy,self).__init__() def forward(self,pre,real,trg_mask): # 返回的数据类型与pre一致,除了axis维度(未指定则为-1),其他维度也与pre一致 # logits=pre,[batch_size,sequence_len,word_size],猜测会进行argmax操作,[batch_size,sequence_len,1] # 默认的soft_label为False,lable=real,[bacth_size,sequence_len,1] cost=paddle.nn.functional.softmax_with_cross_entropy(logits=pre,label=real) # 删除axis=2 shape上为1的维度 # 返回结果的形状应为 [batch_size,sequence_len] cost=paddle.squeeze(cost,axis=[2]) # trg_mask 的形状[batch_size,suqence_len] # * 这个星号应该是对应位置相乘,返回结果的形状 [bathc_szie,sequence_len] masked_cost=cost*trg_mask # paddle.mean 对应轴的对应位置求平均, 在这里返回结果为 [sequence_len] # paddle.sum 求解方法与paddle.mean一致,最终返回的结果应为[1] return paddle.sum(paddle.mean(masked_cost,axis=[0]))
In [35]
epochs=20eos_id=word2id_dict['']num_layers=2dropout_rate=0.2hidden_size=128embedding_dim=256max_grad_norm=5lr=0.001log_freq=200model_path='./train_model/train_model'
In [36]
s2s=Seq2Seq(word_size,embedding_dim,hidden_size,num_layers,eos_id)
W0609 11:31:02.978509 1421 device_context.cc:404] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1W0609 11:31:02.982554 1421 device_context.cc:422] device: 0, cuDNN Version: 7.6.
In [37]
model=paddle.Model(s2s)# model.parameters() 返回一个包含所有模型参数的列表optimizer=paddle.optimizer.Adam(learning_rate=lr,parameters=model.parameters())# 困惑度ppl_metric=paddlenlp.metrics.Perplexity()model.prepare(optimizer,CrossEntropy(),ppl_metric)
2.7 训练并保存
#eval_freq 多少个epoch评估一次 #save_freq 多少个epoch保存模型一次
model.fit(train_data=train_loader, eval_data=val_loader, epochs=epochs, eval_freq=1, save_freq=2, save_dir=model_path, log_freq=log_freq, verbose=2, callbacks=[paddle.callbacks.VisualDL(‘./log’)])
#保存用于预测的模型 #model.save(“./infer_model/infer_model”,False)
3.模型预测
3.1 定义预测模型
In [38]
class Seq2SeqInfer(Seq2Seq): def __init__(self,word_size,embedding_dim,hidden_size,num_layers,bos_id,eos_id,beam_size,max_out_len=couplet_maxlen): self.bos_id=bos_id self.beam_size=beam_size self.max_out_len=max_out_len self.num_layers=num_layers super(Seq2SeqInfer,self).__init__(word_size,embedding_dim,hidden_size,num_layers,eos_id) self.beam_search_decoder=paddle.nn.BeamSearchDecoder( self.decoder.lstm_attention.cell, start_token=bos_id, end_token=eos_id, beam_size=beam_size, embedding_fn=self.decoder.embedding, output_fn=self.decoder.fianl) def forward(self,src,src_length): encoder_output,encoder_states=self.encoder(src,src_length) encoder_final_state=[(encoder_states[0][i],encoder_states[1][i]) for i in range(self.num_layers)] # 初始化decoder的隐藏层状态 decoder_initial_states=[encoder_final_state, self.decoder.lstm_attention.cell.get_initial_states(batch_ref=encoder_output,shape=[self.hidden_size])] src_mask=(src!=self.eos_id).astype(paddle.get_default_dtype()) encoder_padding_mask=(src_mask-1.0)*self.INF encoder_padding_mask=paddle.unsqueeze(encoder_padding_mask,[1]) # 扩展tensor的bacth维度 encoder_out=paddle.nn.BeamSearchDecoder.tile_beam_merge_with_batch(encoder_output,self.beam_size) encoder_padding_mask=paddle.nn.BeamSearchDecoder.tile_beam_merge_with_batch(encoder_padding_mask,self.beam_size) seq_output,_=paddle.nn.dynamic_decode( decoder=self.beam_search_decoder, inits= decoder_initial_states, max_step_num= self.max_out_len, encoder_out=encoder_output, encoder_padding_mask=encoder_padding_mask) return seq_output
In [39]
def pre_process(seq,bos_idx,eos_idx): #print(bos_idx,eos_idx) # 结束位置 eos_pos=len(seq)-1 for i ,idx in enumerate(seq): #print(i,idx[0]) if idx==eos_idx: # 遇到结束标志 eos_pos=i break seq=[idx[0] for idx in seq[:eos_pos] if (idx !=bos_idx) ] return seq
3.2 预测超参数
In [40]
beam_size=1bos_id=word2id_dict['']eos_id=word2id_dict['']max_out_len=couplet_maxlenprint(bos_id)
0
3.3 动态图转静态图
In [41]
x=paddle.to_tensor([[0 , 566, 566, 489, 42 , 165, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ]],dtype=paddle.int32)y=paddle.to_tensor([7],dtype=paddle.int32)print(x)print(y)
Tensor(shape=[1, 34], dtype=int32, place=CUDAPlace(0), stop_gradient=True, [[0 , 566, 566, 489, 42 , 165, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ]])Tensor(shape=[1], dtype=int32, place=CUDAPlace(0), stop_gradient=True, [7])
In [42]
s2si=Seq2SeqInfer(word_size,embedding_dim,hidden_size,num_layers,bos_id,eos_id,beam_size,max_out_len)dd=paddle.load('./trained_model/10.pdparams')s2si.load_dict(dd)net=paddle.jit.to_static(s2si)out=net(x,y)out
Tensor(shape=[1, 6, 1], dtype=int64, place=CUDAPlace(0), stop_gradient=False, [[[4 ], [24], [11], [75], [7 ], [1 ]]])
In [43]
paddle.jit.save(net, './trained_model/net')
4.Android 开发
4.1 opt模型生成及优化
! pip install paddlelite==2.11-rc
! paddle_lite_opt –model_file=./trained_model/net.pdmodel –param_file=./trained_model/net.pdiparams –optimize_out=./trained_model/v1_opt·
4.2 下载预编译的预测库
可以参考官方文档 Java完整示例
我使用的是2.11-rc版本
4.3 主代码展示
package com.baidu.paddle.lite;import android.content.Context;import android.support.v7.app.AppCompatActivity;import android.os.Bundle;import android.util.Log;import android.view.View;import android.widget.Button;import android.widget.EditText;import android.widget.TextView;import java.io.BufferedOutputStream;import java.io.BufferedReader;import java.io.File;import java.io.FileInputStream;import java.io.FileOutputStream;import java.io.FileReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.OutputStream;import java.util.Date;import java.util.HashMap;import java.util.Map;public class MainActivity extends AppCompatActivity { public static final String TAG = "MainActivity"; private Button bt; private EditText et; public Map word_id_map = new HashMap(); public Map id_word_map = new HashMap(); @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); //bt=(Button)findViewById(R.id.bt1);// String path2="assets/word2id.txt";// String path2="assets/id2word.txt"; String np1 = copyFromAssetsToCache("word2id.txt", this); String np2 = copyFromAssetsToCache("id2word.txt", this); try { word_id_map=readTxtToObject(np1); } catch (IOException e) { e.printStackTrace(); } try { id_word_map=readTxtToObject(np2); } catch (IOException e) { e.printStackTrace(); } } public void click(View v){ int id=v.getId(); switch (id) { case R.id.bt1: Log.i("指定onClick属性方式","bt1点击事件"); et=(EditText) findViewById(R.id.text_in); String ss=et.getText().toString();// Log.i("指定onClick属性方式",ss);// Log.i("指定onClick属性方式", String.valueOf(ss.length()));// Log.i("指定onClick属性方式",word_id_map.toString()); int[] buffer1 = new int[]{0 , 1, 1, 1, 1 , 1, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }; for(int i=0;i<ss.length();i++) { //Log.i("指定onClick属性方式1", ss.substring(i, i+1)); //Log.i("指定onClick属性方式", word_id_map.get(ss.substring(i, i+1))); buffer1[i+1]= Integer.parseInt(word_id_map.get(ss.substring(i, i+1))); if(i==34){ break; } } //long[] dims1 = {1, ss.length()}; long[] dims1 = {1, 34}; String re=""; Tensor output=runModel("v1_opt.nb", dims1, buffer1, this); long[] out = output.getLongData(); for(int i=0 ;i<out.length;i++){ if( out[i]==1 || i==ss.length()){ break; } Log.i("指定onClick属性方式1", String.valueOf(out[i])); re+=id_word_map.get(String.valueOf(out[i])); } TextView textView = findViewById(R.id.text_view); textView.setText(re); break; case R.id.bt2: et=(EditText) findViewById(R.id.text_in); textView=(TextView)findViewById(R.id.text_view); textView.setText(""); et.setText(""); default: break; } } public static Map readTxtToObject(String ppath) throws IOException { Map map = new HashMap(); File f=new File(ppath); BufferedReader reader=new BufferedReader(new FileReader(f)); String lineTxt=null; while((lineTxt=reader.readLine())!=null){ String[] names = lineTxt.split(" "); map.put(names[0], names[1]); } return map; } public static String getVersionInfo(String modelName, Context context) { String modelPath = copyFromAssetsToCache(modelName, context); //Log.d(TAG,modelPath); System.out.println(modelPath); MobileConfig config = new MobileConfig(); config.setModelFromFile(modelPath); PaddlePredictor predictor = PaddlePredictor.createPaddlePredictor(config); return predictor.getVersion(); //return modelPath; } public static String copyFromAssetsToCache(String modelPath, Context context) { //context.getCacheDir():获取应用缓存目录 String newPath = context.getCacheDir() + "/" + modelPath; //创建file对象 File desDir = new File(newPath); try { // context.getAssets().open() 打开assets目录下的文件 // Inputstream 字节输入流的最顶层父类 InputStream stream = context.getAssets().open(modelPath); // 创建BufferedOutputStream字节缓冲输出流 OutputStream output = new BufferedOutputStream(new FileOutputStream(newPath)); byte data[] = new byte[1024]; int count; while ((count = stream.read(data)) != -1) { output.write(data, 0, count); } output.flush();//刷新缓冲输出流 output.close();//关闭流 stream.close(); } catch (Exception e) { throw new RuntimeException(e); } return desDir.getPath(); } public static Tensor runModel(String modelName, long[] dims1, int[] inputBuffer1,Context context) {// public static Tensor runModel(String modelName, long[] dims1, int[] inputBuffer1,// long[] dims2, int[] inputBuffer2, Context context) { String modelPath = copyFromAssetsToCache(modelName, context); MobileConfig config = new MobileConfig(); config.setModelFromFile(modelPath); config.setPowerMode(PowerMode.LITE_POWER_HIGH); config.setThreads(1); PaddlePredictor predictor = PaddlePredictor.createPaddlePredictor(config);// System.out.println(predictor);// System.out.println(predictor.getVersion()); Tensor input1 = predictor.getInput(0); input1.resize(dims1); input1.setData(inputBuffer1); predictor.run(); Tensor output = predictor.getOutput(0); return output; } public static Tensor setInputAndRunNaiveModel(String modelName, Context context) { long[] dims1 = {1, 34}; int[] inputBuffer1 = new int[]{0 , 566, 566, 489, 42 , 165, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }; return runModel(modelName, dims1, inputBuffer1, context); } public static String getSecond(String first,Context context){ String result=""; return result; }}
4.4 界面布局代码展示
以上就是【NLP+Android】AI 对联 APP的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/49371.html
微信扫一扫
支付宝扫一扫