人工智能+教育:催化教师身份与角色转型

点击名片

获取更多行业资讯

在英国学者玛格丽特·博登《AI:人工智能的本质与未来》一书中,人工智能被定义为“让计算机完成人类心智能做的各种事情”。迄今为止,“人工智能”研究领域经历了萌芽、诞生、黄金、第一次低谷、繁荣、第二次低谷、继续发展7个阶段。目前,人工智能结合教育的产品涌现如春笋般增长,正在迅速覆盖教育生态的各个领域。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

人工智能+教育:催化教师身份与角色转型

值得注意的是,目前,人工智能仍处在“弱”人工智能阶段,教育数据生态尚未形成,共享机制和人工智能伦理尚未建立。因此,现阶段的“人工智能+教育”产品必然存在诸多风险。就教育领域而言,人工智能的发展在于推进人工智能在教师的“教”和学生的“学”中的深度运用,解决教育、教学中的突出难题,赋能教师,减负学生,回归立德树人初心,促进学生德智体美劳全面发展。

新一代“人工智能+教育”研发方向首选

开发面向教师的人工智能专家平台

当前,人工智能技术叠加到教育场景的探索正在如火如荼地进行。2018年11月,北京师范大学发布的《人工智能+教育蓝皮书》表明,“人工智能+教育”主要集中在智能教育环境、智能学习过程支持、智能教育评价、智能教师助理、教育智能管理与服务等五个典型场景。德勤研究发布的《全球人工智能发展白皮书(2019)》中,人工智能在教育中的应用则被归纳为教、学、评、测、练五个教学环节。

目前,大多数人工智能教育产品的主要使用对象是学生和家长,包括学习机、早教机器人以及搜题类产品等。市场行为本身无可非议,但到目前为止,现有的人工智能教育产品仍未解决精准化和零误差的问题,潜在的教育风险尚未被关注。

实际上,就当前教育而言,最迫切需要开发和提供的产品恰恰应该是面向教师、具有数据挖掘和智能辅助功能的专家系统或平台。

首先,这是教师精准诊断学情的需要。既往讨论教师专业化问题,学者一般会将教师职业与医生职业进行比较。100年前医生与教师使用工具的复杂性几乎没有太大差别,医生使用听筒,教师使用粉笔、黑板;当下这两个职业辅助工具的智能化程度却大相径庭,医生拥有心电、脑电、核磁共振、神经外科手术机器人以及基于大数据和人工智能的专家读片系统、远程诊疗系统等,而教师教学的辅助工具只有电子白板,在学情诊断上缺少相应的智能化工具。教育教学是艺术的,但首先应该是科学的。如果教育教学缺乏科学技术支撑,就会导致教师茫然与困顿。同时,科学技术界尚未优先开发支持教师教育教学、具有诊断功能的产品。因此,聚合新一代通信、物联网、大数据挖掘、人工智能深度学习等技术,开发面向教师的具有教育诊断、解决方案建议的专家系统或平台迫在眉睫。

其次,这是达成实质减负的需要。德国心理学家赫尔曼·艾宾浩斯等人研究发现,学习者要掌握所学的知识需要反复练习巩固,过度学习是需要的,但超过一定限度就会导致学习疲劳而产生边际递减效应。题海战术在传统教学模式中的盛行,不能简单归因为教师“偷懒”或是“片面追求升学率”,而是因为教师大多并不能如医生精准诊断病情那样掌握学生学情。随着班级规模的扩大,教师对学生学情的掌握程度越来越低。因此,要真正减轻学生负担,关键是给予教师必要的支持,帮助其诊断、评价学生学习状况,提供可以选择、改造的教育方案,而这恰恰是人工智能的强项。同时,人工智能也可以将教师从繁杂的简单劳动如考勤、登记分数、统计成绩、数据收集等中解放出来。

人工智能专家平台建设的突破点

学科交叉融合、建立数据生态、推进区块链应用

可以这样重写:目前已经推出的人工智能教育产品,其开发思路和产品功能非常相似。以学习机为例,开发商通过前期与几千所中小学合作,获取海量与教材知识点、能力点关联的练习题,设计出基于行为主义理论的学情诊断和矫正系统或平台。这种类型的平台通常拥有大数据功能,可以通过对学生的作业情况、练习次数等进行分析,生成学生个人形象。实际上,将这些功能提供给教师,能在一定程度上减轻教师负担,帮助教师实施个性化教育教学,这可以称为“人工智能+教育”1.0样态。但是,面向教师的人工智能专家平台应该在智慧化方面向前迈进,从学科交叉融合、教育数据生态建设和区块链技术应用等方面加以突破。

一是学科交叉,跨界融合,实现分工合作的“人工智能+教育”2.0环境架构。“人工智能+教育”2.0技术环境架构需要软件工程、信息科学与技术、控制与自动化、神经教育学、神经心理学、教育技术学等多学科交叉融合。其中,教育学科侧重依托神经科学、心理科学最新研究成果,特别是脑科学和类脑研究领域的最新成果,为计算科学理解人脑和仿生技术提供支撑;计算科学、信息科学等侧重教育大数据获取、知识图谱构建、数据处理与挖掘、智能诊断、研究;软件工程则负责智能平台工程开发等。

二是构建教育数据生态系统。数据、算力、算法、学习科学是“人工智能+教育”的四大要素。海量教育数据既是训练人工智能系统的基础,也是发展教育人工智能的关键。海量教育数据生态数据的形成,取决于获取与共享、数据预处理、数据存储与计算等多方面。在教育数据获取方面,应将重点放在学生学习过程,可以通过眼动仪和可回放书写轨迹的电子墨水本等设备与手段,获取包括课堂学习、解题、回答问题、作品创作等过程的认知、记忆、表象、思维、注意和个性等特征。在教育数据共享方面,应该加快教育数据采集标准与规范的建立,在遵守数据规则和隐私伦理的前提下,按协议开放、共享公共教育数据资源。在教育数据存储与计算方面,除算法优化、深度学习、材料训练等人工智能技术发展与应用外,各高校、科研院所还应联合攻关,快速形成拥有我国自主知识产权的大数据模型和比对常模。

三是推进区块链技术在面向教师的人工智能专家平台中的应用。当前,国内外“区块链+教育”的研究热点,主要聚焦在学分认证、证书管理、数字教育资源、学习者能力与学习成果管理等方面。区块链的中心化、共识机制、可追溯性和高度信任等属性,恰恰可以用来解决教育诊断、学生发展尤其是品德发展评价等棘手问题。基于区块链技术建立学生个人学习成长档案,将有助于彻底改变教育、教学评价方式,也可以为面向教师的人工智能专家平台开发提供重要支撑。

人工智能专家平台之于教师

赋能教师并促进教师主要任务发生变化

AI角色脑洞生成器 AI角色脑洞生成器

一键打造完整角色设定,轻松创造专属小说漫画游戏角色背景故事

AI角色脑洞生成器 176 查看详情 AI角色脑洞生成器

以智能感知、深度学习、神经网络、情感计算等为要素的人工智能环境,已经深深嵌入人类社会的各行各业、生活学习的方方面面。随着人工智能在教育领域迅速发展,许多教师开始忧心自己会不会因此失业

“人工智能+教育”是对教师的赋能,但同时也呼唤教师工作转型。当前,教师传道、授业、解惑的三个主要任务正在发生变化。慕课平台的海量在线学习资源和人工智能家教类产品基本上可以代替传统教师的知识讲授;面向教师的人工智能专家平台也可以在一定程度上协助教师给学生答疑、解惑。

由中国科学技术发展战略研究院、科技部新一代人工智能发展研究中心联合国内外十余家机构编写的《中国新一代人工智能发展报告2020》认为,人工智能时代教师角色和定义发生了变化,但技术不会取代人类教师。新一代人工智能专家平台的出现,除了可以帮助教师完成机械重复的劳动,还能为教师提供学情“画像”和个性化帮助学生的方案。

朱小蔓早在1994年《创建情感师范教育》中就指出,“人的思想品德、情感素质和行为习惯方面,更不是依靠认知教学过程来完成的,而往往是学生自发地向教师模仿、认同,在不自觉的情况下接受教师的影响,建立行为的制约,即所谓潜移默化”。因此,“传道”这个涉及到情感的重要教育任务,目前人工智能难以完全取代。教师与学生进行面对面教育,教师一个关切的眼神、一个加油鼓劲的手势,师生之间形成的信任与支持,以及学生对教师的崇拜、模仿等,是任何冷冰冰的人工智能产品都无法替代的。在线学习在疫情期间的效果也证明了面对面教育的重要性和不可替代性。

教育的本质是一棵树摇动另一棵树,一朵云推动另一朵云,一个灵魂唤醒另一个灵魂。人工智能自身的风险和人工智能在教育中应用的特殊性,决定了应该优先开发面向教师,辅助、支持教师工作的专家系统或平台。教师应该更加关注自身教育经验、智慧的积累,利用人工智能专家平台,开展循证教学,让教学、教育过程变得更科学、更有效,让学生作业、练习更轻松、更精准。借助人工智能提供的大数据和教育建议,教师可以从繁杂、琐碎的重复劳动和分数追逐中解放出来,更充分地担当情感性“育人”的角色,更好地坚守立德树人的初心。

(作者:丁锦宏 系南通大学教师教育学院院长、兼任教师教育管理处处长,教授)

来源丨中国教育报

声明:转载此文是出于传递更多信息之目的。如果标注来源有误或侵犯了您的合法权益,请联系我们并提供权属证明,我们会尽快进行更正和删除。谢谢。

精品悦读

第一现场丨服务全民终身学习 继续教育应发挥重要作用

第一现场丨数字化生态体系构筑与继教高质量发展——数字中国新格局中的高校继续教育发展高峰论坛侧记

数字转型时代 全民终身学习的中国智慧

河北开放大学:提升整体效能 打造开放大学事业共同体

教育数字化转型需避免认识误区

教育与 ChatGPT,对手还是队友

人民网、中国教师报等媒体关注报道《教师数字化学习报告(2022)》发布

专家访谈丨数字化转型是教师学习的必然进阶

以上就是人工智能+教育:催化教师身份与角色转型的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/525190.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 07:33:05
下一篇 2025年11月9日 07:35:59

相关推荐

  • Python AsyncElasticsearch 异步批量操作实践

    本教程旨在指导开发者如何在Python中使用AsyncElasticsearch客户端高效执行异步批量操作。针对helpers.actions.bulk不支持异步客户端的问题,文章详细介绍了如何利用elasticsearch.helpers.async_bulk这一专为异步设计的辅助函数,实现数据的…

    2025年12月14日
    000
  • ChatGPT冲击下,国内技术问答社区如何突围?

    ChatGPT的崛起对全球技术问答社区造成了巨大冲击,Stack Overflow的困境更是敲响了警钟。国内技术问答平台,例如SegmentFault,也面临着同样的挑战。它们该如何应对呢? SegmentFault长期以来专注于为开发者提供高质量的技术问答服务,并不断优化用户体验。这包括持续改进平…

    2025年12月13日
    000
  • Flask流式传输如何模拟ChatGPT的实时响应?

    使用Flask流式传输模拟ChatGPT实时响应 许多应用,例如模拟ChatGPT的实时聊天或大型文件下载,都需要边生成边传输数据,避免客户端长时间等待。本文演示如何在Python Flask框架中实现这种流式传输,并修正原代码中的缺陷。 原代码尝试使用yield实现流式传输,但由于response…

    2025年12月13日
    000
  • Flask如何实现类似ChatGPT的实时数据流传输?

    使用Flask框架构建实时数据流:模拟ChatGPT响应 在Flask Web应用开发中,常常需要模拟ChatGPT的实时数据传输效果,即数据生成的同时即时传输给客户端,而非等待所有数据生成完毕再一起发送。本文将介绍如何利用Flask实现这种流式传输,并解决传统方法中存在的延迟问题。 传统方法的问题…

    2025年12月13日
    000
  • Flask如何实现类似ChatGPT的实时流式响应?

    使用Flask模拟ChatGPT的实时流式响应 许多开发者希望在Flask应用中实现类似ChatGPT的实时响应效果:内容生成过程中持续传输给客户端。然而,简单的Flask response 对象无法满足此需求,它会等待生成器函数完全执行后才发送结果。本文探讨如何利用Flask框架实现真正的流式传输…

    2025年12月13日
    000
  • ChatGPT冲击下,SegmentFault的生存策略是什么?

    ChatGPT的崛起对开发者社区带来了巨大冲击,Stack Overflow的困境已敲响警钟。SegmentFault作为国内领先的开发者社区,如何应对ChatGPT带来的挑战,确保自身持续发展? SegmentFault的核心竞争力在于庞大的中文开发者用户群体和高质量的技术问答内容。然而,Chat…

    2025年12月13日
    000
  • 如何通过 ADB 控制小米手机进行长截图并保存到手机上?

    ADB控制小米手机长截图:探索与实践 许多Android用户需要截取超出屏幕范围的内容,特别是包含滚动内容的页面。本文探讨如何利用ADB (Android Debug Bridge) 在小米手机上实现长截图并保存到手机。目标是截取1600×720分辨率屏幕的完整内容,生成3200&#215…

    2025年12月13日
    000
  • ChatGPT时代,技术问答社区思否如何应对挑战?

    ChatGPT浪潮下,技术问答社区思否(SegmentFault)如何突围? Stack Overflow近期面临挑战,其CEO公开承认公司正经历艰难时期,这与ChatGPT等大型语言模型的崛起息息相关。那么,作为另一个重要的技术问答社区,思否将如何应对这一挑战呢? 本文将分析思否可能的应对策略。参…

    2025年12月13日
    000
  • Flask框架下如何实现ChatGPT式的流式文本传输?

    使用Flask框架构建类似ChatGPT的流式文本传输应用 许多开发者希望利用Flask框架创建类似ChatGPT的应用,实现文本内容的实时生成和传输。然而,Flask的response对象并非为这种场景设计,它会在生成器函数完全执行后才开始返回数据。本文将介绍如何使用Flask的stream_wi…

    2025年12月13日
    000
  • Python的GIL:究竟是作用于整个进程还是每个线程?

    python全局解释器锁(gil)详解:作用范围及误区 Python的GIL (全局解释器锁) 限制了多线程程序的性能,但其作用范围常常被误解。本文将澄清GIL究竟作用于进程还是线程。 许多Python开发者对GIL有所了解,但关于GIL是否作用于每个线程,存在疑问。 这种疑问可能源于与AI模型(例…

    2025年12月13日
    000
  • ChatGPT时代,SegmentFault如何应对开发者问答社区的挑战?

    大型语言模型(LLM)如ChatGPT的崛起,给开发者问答社区带来了前所未有的挑战。Stack Overflow的困境已为业界敲响警钟。那么,SegmentFault将如何应对ChatGPT带来的冲击,保持其在开发者社区中的领先地位呢? ChatGPT能够快速生成代码和答案,这无疑会对Segment…

    2025年12月13日
    000
  • Flask框架如何实现类似ChatGPT的实时流式数据传输?

    使用Flask框架构建实时流式数据传输,如同ChatGPT的即时响应 许多开发者希望在Flask应用中实现类似ChatGPT的实时响应效果:数据生成的同时即时传输给客户端。然而,简单的yield语句无法直接实现这一目标。本文深入探讨如何利用Flask框架高效实现这种流式传输。 问题在于,之前的代码片…

    2025年12月13日
    000
  • Python的GIL:一个进程只有一个,还是每个线程都有一个?

    python全局解释器锁(gil)的真相:只有一个,而非每个线程一个 关于Python的GIL(全局解释器锁),一个常见的误解是它是否每个线程都拥有一个。 事实并非如此。Python进程只有一个GIL。 许多Python开发者对GIL的运作机制有所了解,但一些细节容易混淆。最近,一个截图(此处略去)…

    2025年12月13日
    000
  • 为什么科学家们最初选择Python而非JavaScript进行科学计算?

    Python在科学计算领域的统治地位:从最初的选择到如今的广泛应用 Python在科学计算领域的广泛应用,常常令专注于Web开发并习惯使用JavaScript的开发者感到疑惑。近期ChatGPT源码采用Python编写,更是加剧了这种好奇。JavaScript凭借其丰富的库和框架,在Web开发领域占…

    2025年12月13日
    000
  • Python的全局解释器锁(GIL)究竟作用于进程还是线程?

    Python 全局解释器锁 (GIL) 的作用范围:一个进程只有一个 GIL。 关于 Python 的 GIL 作用范围,存在一些误解。有人认为 GIL 作用于每个线程,也有人认为它作用于整个进程。本文将澄清这个疑问。 Python 的 GIL 仅作用于整个进程,且只有一个 GIL 实例。 这意味着…

    2025年12月13日
    000
  • 为什么科学计算领域偏爱Python而非JavaScript?

    Python在科学计算领域的统治地位:一个前端开发者的视角 ChatGPT源码的公开,让许多前端开发者,例如提问者,开始关注Python在科学计算领域的广泛应用。提问者注意到JavaScript凭借其丰富的库在Web开发中占据主导地位,却好奇为什么科学计算领域偏爱Python。这不仅仅是因为Pyth…

    2025年12月13日
    000
  • 有没有想过像您一样的AI“看到”?初学者&#s注意指南

    在大型语言模型中了解注意力:初学者指南 >您是否曾经想过chatgpt或其他ai模型如何能够很好地理解和响应您的消息?秘密在于一种称为注意的机制 – 一种关键组成部分,可帮助这些模型理解单词之间的关系并产生有意义的响应。让我们简单地将其分解! > 什么是关注? 想象您正在读一…

    2025年12月13日
    000
  • AI模型的兴起,能够在各个行业创建内容,设计和解决方案

    引言 人工智能(AI)已不再是遥不可及的未来科技,它正深刻地改变着当今各行各业。先进的AI模型的出现,彻底革新了企业的内容创作、产品设计以及创新解决方案的开发模式。从AI写作助手到自动化图形设计工具,再到智能化业务解决方案,AI正以前所未有的方式改变着我们的工作方式和人机交互模式。 AI如何重塑内容…

    2025年12月13日
    000
  • OpenAI工具呼叫示例

    from json import loadsfrom signal import signal, sigintfrom requests import get # pip install requestsfrom openai import openai # pip install openai# …

    好文分享 2025年12月13日
    000
  • ChatGPT和Python的完美结合:打造智能客服聊天机器人

    ChatGPT和Python的完美结合:打造智能客服聊天机器人 引言:在当今信息时代,智能客服系统已经成为企业与客户之间重要的沟通工具。而为了提供更好的客户服务体验,许多企业开始转向采用聊天机器人的方式来完成客户咨询、问题解答等任务。在这篇文章中,我们将介绍如何使用OpenAI的强大模型ChatGP…

    2025年12月13日
    000

发表回复

登录后才能评论
关注微信