斯坦福120类狗分类

斯坦福犬数据集含120种犬的20580张图像,用于细粒度分类。文中介绍了解压数据集、安装PaddleX与PaddleClas等环境准备步骤,还涉及用PaddleX划分数据集、配置PaddleClas进行训练,以及模型评估、预测和推理等流程,总结了相关工具在图像分类任务中的表现及注意事项。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

斯坦福120类狗分类 - 创想鸟

你是什么样的狗?

斯坦福120类狗分类 - 创想鸟        

什么?你不认识?那么来让AI告诉你吧!

斯坦福120类狗分类 - 创想鸟        

1.数据集介绍

1.1语境

斯坦福犬数据集包含来自世界各地的120种犬的图像。此数据集是使用ImageNet的图像和注释构建的,用于完成细粒度的图像分类任务。它最初是为进行细粒度图像分类而收集的,这是一个具有挑战性的问题,因为某些犬种具有几乎相同的特征或颜色和年龄不同。

1.2内容

类别数:120图片数量:20,580其他:标签,标注框

1.3 致谢

原始数据源可在 http://vision.stanford.edu/aditya86/ImageNetDogs/ 上找到,其中包含有关训练/测试拆分和基线结果的其他信息。

如果您在出版物中使用此数据集,请在以下论文中引用该数据集:

first

Aditya Khosla,Nityananda Jayadevaprakash,Bangpeng Yao和Li Fei-Fei。用于细粒度图像分类的新型数据集。第一次细粒度视觉分类(FGVC)研讨会,IEEE计算机视觉和模式识别会议(CVPR),2011年。[pdf] [海报] [BibTex]

Secondary

J. Deng,W. Dong,R. Socher,L.-J。Li,K. Li和L. Fei-Fei,ImageNet:大型分层图像数据库。IEEE计算机视觉和模式识别(CVPR),2009年。[pdf] [BibTex]

https://unsplash.com/photos/U6nlG0Y5sfs

1.3 其他任务

您能否正确识别具有类似特征的犬种,例如贝塞猎狗和猎犬?这吉娃娃是年纪大还是年纪大?

2.数据解压

In [ ]

# 解压缩,一次即可# !unzip -aoq data/data87695/Stanford_Dogs_Dataset.zip -d dataset

   In [ ]

!ls dataset/images/Images/

   

由上可见共计有120分类

3.环境准备

3.1 paddlex安装

In [ ]

# PaddleX安装! pip install paddlex# 切记切记paddle2onnx!pip install paddle2onnx

   

3.2 paddleclas安装

In [ ]

!git clone https://gitee.com/paddlepaddle/PaddleClas.git --depth=1

   In [ ]

!cd PaddleClas && pip3 install --upgrade -r requirements.txt

   

4.数据集处理

4.1利用paddlex划分数据集

分别生成 labels.txt test_list.txt train_list.txt val_list.txt

In [ ]

# 数据集划分!paddlex --split_dataset --format ImageNet --dataset_dir ~/dataset/images/Images --val_value 0.2 --test_value 0.1

   

4.2标签查看

In [ ]

# 各种标签查看!cat  ~/dataset/images/Images/labels.txt

   

5.PaddleClas配置

5.1 基础配置

进入PaddleClas目录设置显卡In [ ]

# 进入PaddleClas%cd ~/PaddleClas

   In [ ]

!export CUDA_VISIBLE_DEVICES=0

   

5.2 PaddleClas训练配置

使用PaddleClas/configs/MobileNetV3/MobileNetV3smallx075.yaml

mode: 'train'ARCHITECTURE:    name: "MobileNetV3_small_x0_75"pretrained_model: ""model_save_dir: "./output/"# 120类classes_num: 120# 总图片数量total_images: 20580save_interval: 1ls_epsilon: 0.1validate: Truevalid_interval: 1# 训练轮次epochs: 360topk: 5image_shape: [3, 224, 224]LEARNING_RATE:    function: 'Cosine'    params:        lr: 2.6        warmup_epoch: 5OPTIMIZER:    function: 'Momentum'    params:        momentum: 0.9    regularizer:        function: 'L2'        factor: 0.00002TRAIN:    batch_size: 4096    num_workers: 4    file_list: "/home/aistudio/dataset/images/Images/train_list.txt"    data_dir: "/home/aistudio/dataset/images/Images"    shuffle_seed: 0    transforms:        - DecodeImage:            to_rgb: True            channel_first: False        - RandCropImage:            size: 224        - RandFlipImage:            flip_code: 1        - NormalizeImage:            scale: 1./255.            mean: [0.485, 0.456, 0.406]            std: [0.229, 0.224, 0.225]            order: ''        - ToCHWImage:VALID:    batch_size: 64    num_workers: 4    file_list: "/home/aistudio/dataset/images/Images/val_list.txt"    data_dir: "/home/aistudio/dataset/images/Images"    shuffle_seed: 0    transforms:        - DecodeImage:            to_rgb: True            channel_first: False        - ResizeImage:            resize_short: 256        - CropImage:            size: 224        - NormalizeImage:            scale: 1.0/255.0            mean: [0.485, 0.456, 0.406]            std: [0.229, 0.224, 0.225]            order: ''        - ToCHWImage:

   In [ ]

!pwd

   

5.3训练bug

2021-05-10 01:36:33,765 - ERROR - DataLoader reader thread raised an exception!2021-05-10 01:36:33,766 - ERROR - (Fatal) Blocking queue is killed because the data reader raises an exception.  [Hint: Expected killed_ != true, but received killed_:1 == true:1.] (at /paddle/paddle/fluid/operators/reader/blocking_queue.h:158)

   

5.4 finetune

‘./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml’

mode: 'train'ARCHITECTURE:    name: 'MobileNetV3_large_x1_0'pretrained_model: "./pretrained/MobileNetV3_large_x1_0_pretrained"model_save_dir: "./output/"use_gpu: True# 120类classes_num: 120# 总图片数量20580total_images: 14499save_interval: 1validate: Truevalid_interval: 1epochs: 20topk: 1image_shape: [3, 224, 224]LEARNING_RATE:    function: 'Cosine'              params:                           lr: 0.00375OPTIMIZER:    function: 'Momentum'    params:        momentum: 0.9    regularizer:        function: 'L2'        factor: 0.000001TRAIN:    batch_size: 160    num_workers: 0    file_list: "/home/aistudio/dataset/images/Images/train_list.txt"    data_dir: "/home/aistudio/dataset/images/Images/"    shuffle_seed: 0    transforms:        - DecodeImage:            to_rgb: True            channel_first: False        - RandCropImage:            size: 224        - RandFlipImage:            flip_code: 1        - NormalizeImage:            scale: 1./255.            mean: [0.485, 0.456, 0.406]            std: [0.229, 0.224, 0.225]            order: ''        - ToCHWImage:VALID:    batch_size: 160    num_workers: 0    file_list: "/home/aistudio/dataset/images/Images/val_list.txt"    data_dir: "/home/aistudio/dataset/images/Images/"    shuffle_seed: 0    transforms:        - DecodeImage:            to_rgb: True            channel_first: False        - ResizeImage:            resize_short: 256        - CropImage:            size: 224        - NormalizeImage:            scale: 1.0/255.0            mean: [0.485, 0.456, 0.406]            std: [0.229, 0.224, 0.225]            order: ''        - ToCHWImage:

   

5.5下载预训练模型

In [ ]

 !python tools/download.py -a MobileNetV3_large_x1_0 -p ./pretrained -d True

   

6.开始训练

In [21]

!python tools/train.py -c './configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml'

   

visualDL可视化metrics图标

斯坦福120类狗分类 - 创想鸟        

7. 模型评估

可以通过以下命令进行模型评估。

In [23]

!python tools/eval.py     -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml     -o pretrained_model="./output/MobileNetV3_large_x1_0/best_model/ppcls"    -o load_static_weights=False

   

8. 使用预训练模型进行模型预测

模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 tools/infer/infer.py 中提供了完整的示例,只需执行下述命令即可完成模型预测:

In [25]

!python tools/infer/infer.py     -i ../111.jpg     --model MobileNetV3_large_x1_0     --pretrained_model "./output/MobileNetV3_large_x1_0/best_model/ppcls"     --use_gpu True     --load_static_weights False

   

9.使用inference模型进行模型推理

通过导出inference模型,PaddlePaddle支持使用预测引擎进行预测推理。接下来介绍如何用预测引擎进行推理: 首先,对训练好的模型进行转换:

In [27]

!python tools/export_model.py     --model MobileNetV3_large_x1_0     --pretrained_model ./output/MobileNetV3_large_x1_0/best_model/ppcls     --output_path ./inference

   In [29]

!python tools/infer/predict.py     --image_file ../dataset/images/Images/n02085936-Maltese_dog/n02085936_10148.jpg     --model_file "./inference/inference.pdmodel"     --params_file "./inference/inference.pdiparams"     --use_gpu=True     --use_tensorrt=False

   

10.总结

总的来说,paddleclas以及paddlex面对多类型、大数据量图像分类任务有很优秀得表现,有以下几点需要注意:

在提高acc并兼顾效率时,最好使用轻量级模型,并适当选择图像增强策略;使用visualDL可视化Metrics,可以实时观察训练走势,即使调整策略。

以上就是斯坦福120类狗分类的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/53744.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 11:49:31
下一篇 2025年11月9日 11:50:19

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 旋转长方形后,如何计算其相对于画布左上角的轴距?

    绘制长方形并旋转,计算旋转后轴距 在拥有 1920×1080 画布中,放置一个宽高为 200×20 的长方形,其坐标位于 (100, 100)。当以任意角度旋转长方形时,如何计算它相对于画布左上角的 x、y 轴距? 以下代码提供了一个计算旋转后长方形轴距的解决方案: const x = 200;co…

    2025年12月24日
    000
  • 旋转长方形后,如何计算它与画布左上角的xy轴距?

    旋转后长方形在画布上的xy轴距计算 在画布中添加一个长方形,并将其旋转任意角度,如何计算旋转后的长方形与画布左上角之间的xy轴距? 问题分解: 要计算旋转后长方形的xy轴距,需要考虑旋转对长方形宽高和位置的影响。首先,旋转会改变长方形的长和宽,其次,旋转会改变长方形的中心点位置。 求解方法: 计算旋…

    2025年12月24日
    000
  • 旋转长方形后如何计算其在画布上的轴距?

    旋转长方形后计算轴距 假设长方形的宽、高分别为 200 和 20,初始坐标为 (100, 100),我们将它旋转一个任意角度。根据旋转矩阵公式,旋转后的新坐标 (x’, y’) 可以通过以下公式计算: x’ = x * cos(θ) – y * sin(θ)y’ = x * …

    2025年12月24日
    000
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 如何计算旋转后长方形在画布上的轴距?

    旋转后长方形与画布轴距计算 在给定的画布中,有一个长方形,在随机旋转一定角度后,如何计算其在画布上的轴距,即距离左上角的距离? 以下提供一种计算长方形相对于画布左上角的新轴距的方法: const x = 200; // 初始 x 坐标const y = 90; // 初始 y 坐标const w =…

    2025年12月24日
    200
  • CSS元素设置em和transition后,为何载入页面无放大效果?

    css元素设置em和transition后,为何载入无放大效果 很多开发者在设置了em和transition后,却发现元素载入页面时无放大效果。本文将解答这一问题。 原问题:在视频演示中,将元素设置如下,载入页面会有放大效果。然而,在个人尝试中,并未出现该效果。这是由于macos和windows系统…

    2025年12月24日
    200
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 如何计算旋转后的长方形在画布上的 XY 轴距?

    旋转长方形后计算其画布xy轴距 在创建的画布上添加了一个长方形,并提供其宽、高和初始坐标。为了视觉化旋转效果,还提供了一些旋转特定角度后的图片。 问题是如何计算任意角度旋转后,这个长方形的xy轴距。这涉及到使用三角学来计算旋转后的坐标。 以下是一个 javascript 代码示例,用于计算旋转后长方…

    2025年12月24日
    000
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信