网络效应如何让人工智能变得更聪明

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

网络效应如何让人工智能变得更聪明

网络效应决定了从电话到在线购物平台等技术的成功,ChatGPT等人工智能工具也不例外。然而,不同之处在于这些网络效应的运作方式。数据网络效应是一种新形式,就像更熟悉的直接和间接网络效应一样,技术的价值随着它获得用户数量的增加而增加。

然而,我们今天讨论的价值不是来电话的数量或许多买家和卖家的存在某个电商平台上,而是来自帮助它做出更好预测的反馈。更多用户意味着更多响应,从而进一步提高预测准确性,从而形成良性循环。企业需要考虑三个教训:1) 反馈至关重要,2) 定期细致地收集信息,3) 考虑那些有意或无意分享的数据。

去年年底,当 OpenAI 推出 ChatGPT 时,行业观察家的反应既赞扬又担忧。我们都听说了该技术如何让计算机程序员、教师、金融交易员和分析师、平面设计师和艺术家等群体集体失业。由于担心 AI 会扼杀大学生们创作能力,许多大学急于修改课程计划及相关要求。也有人说,也许最直接的影响是 ChatGPT可以重塑甚至取代传统的互联网搜索引擎。搜索和相关广告为谷歌带来了绝大部分收入,那么,聊天机器人会成为谷歌的终结者吗?

ChatGPT是机器学习技术的卓越展示,但作为独立服务几乎不可行。为了发挥自己的技术实力,OpenAI需要一个合作伙伴。因此,当该公司迅速宣布与微软达成协议时,我们并不感到惊讶。这家人工智能初创公司和老牌科技公司的联合可能最终会对谷歌的主导地位构成可信的威胁,从而加大“人工智能军备竞赛”的赌注。它还提供了一个教训,说明哪些力量将决定哪些公司将蓬勃发展,哪些公司将在部署这种技术时步履蹒跚。

为了理解是什么迫使 OpenAI 与 Bing 结盟(以及为什么谷歌仍可能获胜),我们考虑了这项技术与过去的发展有何不同,例如电话或 Uber 或 Airbnb 等市场平台。在这些例子中,网络效应——产品的价值随着用户的增加而上升——在决定这些产品如何增长以及哪些公司成功方面发挥了重要作用。像ChatGPT这样的生成式人工智能服务受到类似但不同类型的网络效应的影响。为了选择适合人工智能的战略,管理者和企业家必须掌握这种新型人工智能网络效应是如何运作的。

网络效应对 AI 的作用不同

人工智能的价值在于准确的预测和建议。但与依赖于将供应(如电力或人力资本)转化为输出(如照明或税务建议)的传统产品和服务不同,人工智能需要大量数据集,必须通过来回的客户交互来保持最新。为了保持竞争力,人工智能运营商必须收集数据、分析数据、提供预测,然后寻求反馈以完善建议。系统的价值取决于来自用户的数据,并随着数据的增加而增加。

这项技术的性能——准确预测和建议的能力——取决于称为数据网络效应的经济原理(有些人更喜欢称之为数据驱动的学习)。这些与熟悉的直接网络效应截然不同,比如随着用户的增长,电话会变得更有价值,因为你可以打电话给更多的人。它们也不同于间接网络效应,后者描述了越来越多的买家如何邀请更多的卖家加入平台,反之亦然——当有更多卖家在场时,在 电商平台购物或在 Airbnb 上预订房间变得更具吸引力。

数据网络效应是一种新形式:就像越熟悉的效应一样,用户越多,技术就越有价值。但在这里,价值不是来自同行的数量,也不是来自许多买家和卖家的存在。相反,这些影响源于技术的本质:人工智能通过强化学习、预测和反馈来改进。随着智能的增加,系统可以做出更好的预测,增强其实用性,吸引新用户并留住现有用户。更多用户意味着更多响应,从而进一步提高预测准确性,从而形成良性循环。

以谷歌地图为例,它使用 AI 推荐到达目的地的最快路线。这种能力取决于预测替代路径中的真实流量模式,这通过利用来自许多用户的数据来实现。在这里,数据用户也是供应商,使用谷歌地图的人越多,它积累的历史数据和并发数据就越多。有了大量的数据,谷歌可以将无数的预测与实际结果进行比较:你是否在应用程序预测的时间到达?  为了完善预测,应用程序还需要您的印象:说明有多好?随着客观事实和主观评论的积累,网络效应开始发挥作用。这些效应改进了预测并提升了应用程序对用户以及 Google 的价值。

一旦我们了解了网络效应如何驱动人工智能,我们就可以想象这项技术需要的新策略。

智写助手 智写助手

智写助手 写得更快,更聪明

智写助手 12 查看详情 智写助手

OpenAI 与微软

让我们从OpenAI和微软的联姻说起。当我们对ChatGPT进行beta测试时,我们对其创造性的、类似人类的反应印象深刻,但也意识到它也存在瓶颈:它依赖于2021年最后一次收集的大量数据,所以不要问最近的事件甚至天气。更糟糕的是,它缺乏一个健全的反馈循环机制。

然而,通过与微软的链接,OpenAI找到了一种测试预测的方法。Bing用户的问题——以及他们如何评价答案——对于更新和改进ChatGPT至关重要。我们想象,下一步是微软将其维护的大量用户数据云输入到算法中。当ChatGPT能够消化数不清的Excel表格、PowerPoint演示文稿、Word文档和LinkedIn简历时,它将在重新创建这些文件方面做得更好,这将让办公室里的人感到高兴或恐惧。

这里至少有三个广泛的教训。

首先,反馈至关重要。人工智能的价值随着不断的用户反应而增强。为了保持智能,算法需要当前用户选择和过去建议评级的数据流。没有反馈,即使是最好的工程算法也不会长期保持智能。正如 OpenAI 所意识到的,即使是最复杂的模型也需要链接到不断流动的数据源。人工智能企业家应该很清楚这一点。

其次,高管们应该定期细致地收集信息,以最大限度地利用这些影响。他们应该遍历典型的财务和运营记录。有用的数据随处可见,无论是在企业内部还是外部。它们可能来自与买家、供应商和同事的互动。例如,零售商可以跟踪消费者查看了什么、他们将什么放入购物车以及他们最终支付了什么。累积起来,这些微小的细节可以极大地改善人工智能系统的预测。即使是不常见的数据,包括企业无法控制的数据,也可能值得收集。天气数据有助于 Google 地图预测路况。跟踪招聘人员用于搜索简历的关键字可以帮助 LinkedIn 为求职者提供成功秘诀。

最后,每个人都应该考虑他们有意或无意共享的数据。事实和反馈对于建立更好的预测至关重要,但是你的数据的价值可能会被其他人获取,高管们应该考虑哪些人工智能能够从他们共享(或允许访问)的数据中受益。有时,他们应该限制共享。例如,当 Uber 司机使用应用程序 Waze 导航时,他们帮助谷歌估计叫车行程的频率和长度。在谷歌考虑运营自动驾驶出租车时,此类数据可能非常宝贵。

另外,当像阿迪达斯这样的品牌在亚马逊上销售产品时,这家零售巨头就可以估计不同品牌(如与耐克相比)和类别的需求,以及买家对价格的敏感性。这一结果可能会提供给竞争对手,或者有利于亚马逊的自有品牌产品。为了应对这种情况,高管们可以避开第三方平台或中介机构。他们可以协商数据访问,他们可以努力保持与客户的直接联系。有时,最好的解决方案可能是让数据所有者在数据交换中绑定和共享,就像银行在建立共享信用数据的方法时所做的那样。

当您考虑AI网络效应时,我们可以更好地理解该技术的未来。还可以看到这些效应与其他网络效应一样,如何使富人变得更加富有。AI 背后的动力意味着先行者可能会得到丰厚的回报,而追随者,无论多么快,都可能被遗弃。这也意味着,当一个人可以访问 AI 算法和数据流时,优势会随着时间的推移而积累,并且无法轻易超越。对于高管、企业家、政策制定者和其他所有人来说,人工智能最好的和最坏的尚未到来。

以上就是网络效应如何让人工智能变得更聪明的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/551577.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 20:21:45
下一篇 2025年11月9日 20:22:54

相关推荐

  • 使用Python PDDL框架构建旅行商问题:Effect表达式的正确姿势

    本文旨在指导用户在使用`pddl` python框架构建旅行商问题(tsp)时,如何正确处理pddl动作的`effect`表达式。通过分析常见的`recursionerror`,揭示了将pddl逻辑表达式误用字符串拼接的错误,并提供了使用框架内置逻辑运算符(如`&`和`~`)来组合谓词的正确…

    2025年12月15日
    000
  • 如何使用Python Flashtext模块?

    Flashtext是一款高效Python模块,利用Trie树结构实现快速关键词提取与替换,支持批量添加、不区分大小写模式,适用于日志处理、敏感词过滤等场景,性能优于正则表达式。 Flashtext 是一个高效的 Python 模块,用于在文本中快速提取关键词或替换多个关键词。相比正则表达式,它在处理…

    2025年12月15日
    000
  • ChromaDB向量嵌入的有效持久化策略

    本文详细介绍了如何利用langchain中chromadb的`persist_directory`功能,高效地持久化存储向量嵌入。通过将生成的嵌入数据保存到本地磁盘,可以有效避免重复计算,显著提升工作流程效率。教程将涵盖持久化chromadb实例的创建与后续加载的完整过程。 在处理大规模文本数据并生…

    2025年12月14日
    000
  • 人工智能python是什么

    Python因语法简洁、库丰富(如TensorFlow、PyTorch、scikit-learn)、社区强大及与数据科学工具兼容,成为实现人工智能的首选语言,广泛应用于机器学习、深度学习、自然语言处理和计算机视觉等领域。 “人工智能Python”并不是一个独立的技术或产品,而是指使用Python语言…

    2025年12月14日
    000
  • 解决Google Colab中Gemini AI连接错误及API调用优化策略

    在google colab中使用gemini ai时,开发者常遇到`internalservererror`或`networkerror`,尤其是在调用`list_models`或`generate_content`时。这些错误通常源于瞬时网络问题或服务器端不稳定。本文提供了一种健壮的解决方案,通过…

    2025年12月14日
    000
  • 持久化ChromaDB向量嵌入:避免重复计算的教程

    本教程详细介绍了如何使用chromadb的`persist_directory`功能来高效地保存和加载向量嵌入数据库,从而避免重复计算。通过指定一个持久化目录,用户可以轻松地将生成的嵌入结果存储到本地文件系统,并在后续操作中直接加载,极大地节省了时间和计算资源。文章提供了清晰的代码示例和关键注意事项…

    2025年12月14日
    000
  • Textual Framework中实现屏幕间数据传递的教程

    在textual framework中,实现屏幕间数据传递,尤其是在使用 `push_screen` 方法进行导航时,主要通过定制目标屏幕的构造器来完成。本教程将详细演示如何修改 `screen` 类的 `__init__` 方法以接受特定数据,从而允许在不同屏幕之间进行动态内容显示,例如根据用户选…

    2025年12月14日
    000
  • ChromaDB向量嵌入持久化:高效保存与加载策略

    本教程详细介绍了如何利用chromadb的`persist_directory`功能,有效地保存和加载向量嵌入数据库,从而避免重复计算。通过简单的代码示例,您将学会如何在创建chromadb实例时指定持久化目录,以及如何在后续操作中从该目录加载已保存的数据库,确保数据一致性和计算效率。这种方法是管理…

    2025年12月14日
    000
  • 使用 Python 实现网格地图 A* 路径规划教程

    本教程详细介绍了如何在 python 中实现网格地图的路径规划。利用类似广度优先搜索的策略,从起点开始,逐步将可通行节点标记为指向起点的方向。一旦到达目标点,即可通过回溯这些方向,高效地重建出从起点到目标的最优路径。文章包含示例代码,帮助读者理解并应用此寻路方法。 1. 简介与问题定义 路径规划是人…

    2025年12月14日
    000
  • python蒙特卡洛算法的介绍

    蒙特卡洛算法通过大量随机抽样逼近真实结果,适用于高维积分、金融建模等问题。Python利用random和NumPy生成随机数,通过设定模拟次数、统计频率估算期望值,如用投点法估算π值。随着模拟次数增加,结果更接近真实值。该方法广泛应用于金融工程、物理仿真、人工智能和项目风险管理等领域,具有强大适应性…

    2025年12月14日
    000
  • Python AsyncElasticsearch 异步批量操作实践

    本教程旨在指导开发者如何在Python中使用AsyncElasticsearch客户端高效执行异步批量操作。针对helpers.actions.bulk不支持异步客户端的问题,文章详细介绍了如何利用elasticsearch.helpers.async_bulk这一专为异步设计的辅助函数,实现数据的…

    2025年12月14日
    000
  • 如何走进Python的大门?

    答案是动手实践和持续积累能帮你轻松入门Python。先安装Python 3.x并配置环境,使用IDLE或VS Code写代码;接着学习变量、控制结构、函数和数据容器等基础语法,通过每日小练习巩固;然后做计算器、待办清单等小项目,完整经历开发流程;最后加入社区,参与开源、阅读分享,借助群体力量持续进步…

    2025年12月14日
    000
  • Z3求解器在非线性约束优化中的局限性与应用指南

    Z3的Optimizer主要设计用于解决线性SMT公式的优化问题。对于实数或整数上的非线性约束,Optimizer通常不支持,可能导致求解器无响应或不终止。然而,位向量上的非线性约束是支持的,因为它们可以通过位爆炸技术处理。本文将深入探讨Z3在处理非线性约束时的行为、局限性及其适用范围,并提供相应的…

    2025年12月14日
    000
  • Anaconda 与 Python 官方版的选择对比

    选Anaconda还是Python官方版取决于使用场景:若从事数据科学、机器学习,需开箱即用的库和环境管理,则选Anaconda;若进行Web开发、自动化脚本或追求轻量灵活,则选Python官方版。 选 Anaconda 还是 Python 官方版,关键看你的具体需求和使用场景。两者都能运行 Pyt…

    2025年12月14日
    000
  • 处理Google Generative AI API限流与数据持久化实践

    本文旨在指导开发者在使用Google Generative AI API(原PaLM API)时,如何有效应对429限流错误、实现数据持久化与错误恢复。我们将探讨官方API的优势,提供实用的限流策略如时间延迟和指数退避,并演示如何在数据处理过程中实时保存结果。通过详细的代码示例和最佳实践,帮助您构建…

    2025年12月14日
    000
  • Python Z3 应用:基于约束求解的网格安全路径查找

    本文详细介绍了如何利用 Python Z3 约束求解器解决网格路径查找问题。通过将路径建模为一系列符号变量,并施加移动规则、安全区域限制以及路径唯一性等约束,Z3 能够有效地找到从起点到终点的有效路径,避开障碍物。教程提供了完整的代码示例和详细解释,帮助读者理解 Z3 在此类问题中的应用。 引言:基…

    2025年12月14日
    000
  • python网站入口 python网站入口直接打开入口

    Python 作为一门广泛应用于数据科学、机器学习、人工智能、Web 开发等领域的编程语言,其官方网站是每个 Python 开发者和学习者的必经之路。无论你是初学者还是经验丰富的开发者,Python 官方网站都提供了丰富的资源和工具,帮助你更好地学习和使用这门语言。通过 Python 官方网站,你可…

    2025年12月14日
    000
  • ChatGPT冲击下,国内技术问答社区如何突围?

    ChatGPT的崛起对全球技术问答社区造成了巨大冲击,Stack Overflow的困境更是敲响了警钟。国内技术问答平台,例如SegmentFault,也面临着同样的挑战。它们该如何应对呢? SegmentFault长期以来专注于为开发者提供高质量的技术问答服务,并不断优化用户体验。这包括持续改进平…

    2025年12月13日
    000
  • Flask流式传输如何模拟ChatGPT的实时响应?

    使用Flask流式传输模拟ChatGPT实时响应 许多应用,例如模拟ChatGPT的实时聊天或大型文件下载,都需要边生成边传输数据,避免客户端长时间等待。本文演示如何在Python Flask框架中实现这种流式传输,并修正原代码中的缺陷。 原代码尝试使用yield实现流式传输,但由于response…

    2025年12月13日
    000
  • Flask如何实现类似ChatGPT的实时数据流传输?

    使用Flask框架构建实时数据流:模拟ChatGPT响应 在Flask Web应用开发中,常常需要模拟ChatGPT的实时数据传输效果,即数据生成的同时即时传输给客户端,而非等待所有数据生成完毕再一起发送。本文将介绍如何利用Flask实现这种流式传输,并解决传统方法中存在的延迟问题。 传统方法的问题…

    2025年12月13日
    000

发表回复

登录后才能评论
关注微信