OpenAI CEO表示:扩大规模并非进步的唯一方法,巨型AI模型时代或将结束

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

OpenAI CEO:巨型AI模型时代即将终结,想进步别再靠扩大规模

4月18日消息,OpenAI的聊天机器人ChatGPT可谓是功能强大,引起了人们对人工智能的极大兴趣和投资。但该公司的CEO萨姆·奥尔特曼认为,现有研究策略已经失效,未来的AI进步需要新的思路。

近年来,OpenAI通过将现有的机器学习算法扩展到以前无法想象的规模,在处理语言方面取得了一系列令人印象深刻的进步。其最近开发的项目是GPT-4,据称已经使用数万亿字的文本和数千个强大的计算机芯片进行训练,耗资超过1亿美元。

但是,奥尔特曼表示,未来AI的进步不再依赖于将模型变得更大。在麻省理工学院的一次活动上,他说:“我认为,我们正处在一个时代的尽头。在(即将过去的)这个时代,模型变得越来越大。现在,我们会在其他方面让它们变得更好。”

奥尔特曼的表态意味着,开发和部署新AI算法的竞赛出现了出人意料的转折。自去年11月推出ChatGPT以来,微软就开始利用这一底层技术在其必应搜索引擎中添加了聊天机器人,谷歌也推出了名为Bard的竞争对手。许多人都迫不及待地尝试使用这种新型聊天机器人来帮助完成工作或个人任务。

与此同时,许多资金充足的初创公司,包括Anthropic、AI21、Cohere和Character.AI等,正在投入大量资源用于构建更大的算法,以努力赶上OpenAI的脚步。ChatGPT的初始版本是基于GPT-3构建的,但用户现在也可以访问功能更强大的GPT-4支持的版本。

奥尔特曼的陈述也暗示,采用将模型扩大并提供更多数据进行训练的策略后,GPT-4可能是OpenAI最后一项重大成果。不过,他没有透露任何可能替代当前方法的研究策略或技术。在描述GPT-4的论文中,OpenAI表示,其估计表明,扩大模型规模的回报正在减少。奥尔特曼说,该公司可以建立的数据中心数量以及建设这些中心的速度也都受到物理限制。

Cohere的联合创始人尼克·弗罗斯特(Nick Frosst)曾在谷歌从事人工智能研究,他表示,奥尔特曼所说的“不断扩大模型规模并不是无限制的有效解决方案”是正确的。他认为,针对GPT-4和其他transformers类型(编辑组:transformers直译为转换器,而GPT是Generative pre-trained transformers的简写,意思是基于转换器的生成式预训练模型)的机器学习模型,进展不再只是靠扩大规模。

弗罗斯特补充说:“有很多方法可以让transformers变得更好、更有用,而且很多方法都不涉及给模型增加参数。新的人工智能模型设计或架构,以及基于人类反馈的进一步调整,都是许多研究人员已经在探索的前进方向。”

在OpenAI的语言算法家族中,每个版本都由人工神经网络组成,这个软件的设计灵感来自于神经元之间相互作用的方式,经过训练后,它可以预测应该跟随在给定文本字符串后面的单词。

2019年,OpenAI发布了其第一个语言模型GPT-2。它最多涉及到15亿个参数,这一指标能够衡量神经元之间可调整的连接数量的大小。这个数字非常大,这在某种程度上要归功于OpenAI研究人员的发现,扩大规模使模型变得更加连贯。

2020年,OpenAI推出GPT-2的后继者GPT-3,该模型规模更大,参数高达1750亿个。GPT-3在生成诗歌、电子邮件和其他文本方面具备广泛能力,这令其他公司和研究机构相信,他们可以将自己的AI模型扩展到与GPT-3类似甚至更大的规模。

去年11月,ChatGPT首次亮相后,表情包制造者和科技专家猜测,当GPT-4问世时,它将是个拥有更多参数、更为复杂的模型。然而,当OpenAI最终宣布新的人工智能模型时,该公司没有透露它有多大,也许是因为规模不再是唯一重要的因素。在麻省理工学院的活动上,奥尔特曼被问及GPT-4的培训成本是否有1亿美元,他回答说:“不止如此。”

尽管OpenAI对GPT-4的规模和内部工作原理保密,但很可能它已经不再仅仅依赖于扩大规模来提高性能。有一种可能性是,该公司使用了名为“强化学习与人类反馈”的方法,用于增强ChatGPT的能力,包括让人类判断模型答案的质量,以引导它提供更有可能被判断为高质量的答案。

GPT-4的非凡能力让许多专家感到震惊,并引发了关于AI改变经济潜力的辩论,以及其可能传播虚假信息和制造失业的担忧。许多企业家和AI专家最近签署了一封公开信,呼吁暂停开发比GPT-4更强大的模型6个月,其中包括特斯拉首席执行官埃隆·马斯克。

在麻省理工学院的活动中,奥尔特曼证实,他的公司目前没有开发GPT-5。他补充说:“这封公开信的早期版本声称OpenAI正在训练GPT-5。实际上我们并没有这样做,短期内也不会。”

以上就是OpenAI CEO表示:扩大规模并非进步的唯一方法,巨型AI模型时代或将结束的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/555955.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 22:32:57
下一篇 2025年11月9日 22:37:27

相关推荐

  • 从OpenAI API响应中高效提取文本内容

    本文详细指导如何从openai gpt系列模型的api json响应中准确提取所需的文本内容。我们将重点介绍如何利用json解析器处理api返回的结构化数据,避免直接字符串操作的常见错误,并通过具体代码示例演示如何访问choices数组中的生成文本,并探讨处理多条生成结果的方法,确保开发者能高效、稳…

    2025年12月23日
    000
  • ai做html怎么运行_AI生成html运行步骤【教程】

    答案是使用AI生成HTML代码后,将其保存为.html文件并用浏览器打开即可运行。具体步骤为:1. 在AI工具中输入需求生成HTML代码;2. 将代码复制到文本编辑器并另存为index.html,编码选UTF-8,类型选“所有文件”;3. 双击该文件用浏览器打开,若无法正常显示需检查文件后缀、编码及…

    2025年12月23日
    000
  • 从OpenAI API响应中高效提取生成文本

    本文旨在指导开发者如何正确解析OpenAI API返回的JSON格式响应,并从中提取所需的生成文本内容。通过详细的步骤和代码示例,我们将展示如何使用`JSON.parse()`方法处理API响应,并精确访问`choices[0].text`属性以获取核心文本输出,同时探讨处理多条生成结果的方法及相关…

    2025年12月23日
    000
  • p5.js中类方法声明的语法解析与常见错误修复指南

    本文旨在解决从java processing迁移至p5.js时常见的语法错误,特别是类内部方法声明不当引发的问题。我们将深入探讨javascript中全局函数与类方法声明的语法差异,提供清晰的示例代码,并指导如何识别和修复“unexpected token”及“declaration or stat…

    2025年12月21日
    000
  • p5.js中类方法声明的语法修正与迁移指南

    本文深入探讨了将Processing/Java代码转换为p5.js时,因JavaScript类方法声明语法差异而引发的常见错误。我们将重点解析`Unexpected token`和`Declaration or statement expected`等错误信息,明确全局函数与类成员方法在JavaSc…

    2025年12月21日
    000
  • TypeScript泛型函数中复杂对象结构类型推断的精确控制

    本文探讨了在typescript中处理复杂嵌套对象结构时,如何为泛型函数实现精确的类型推断。通过一个具体的汽车品牌和车型数据场景,我们分析了`object.values`等操作可能导致类型信息丢失的问题。核心解决方案是利用映射类型(mapped types)重构数据结构,以显式地建立泛型键与对应值之…

    2025年12月21日
    000
  • 解决OpenAI微调模型”模型不存在”错误:API端点选择指南

    当使用openai微调模型时,若遇到“the model `xxxxx` does not exist”错误,通常是由于选择了错误的api端点。本文将详细阐述如何根据微调模型的类型(gpt-3.5 turbo或旧版gpt-3模型如babbage/davinci)正确选择chat completion…

    2025年12月20日
    000
  • 解决OpenAI微调模型“模型不存在”错误的指南

    在使用openai微调模型时,若遇到“the model `xxxxx` does not exist”错误,通常是由于api端点选择不当。本教程将详细阐述如何根据微调模型的基础类型(gpt-3或gpt-3.5 turbo)选择正确的api端点(completions api或chat comple…

    2025年12月20日
    000
  • OpenAI微调模型调用错误:“模型不存在”的解决方案与API选择指南

    当您在使用%ignore_a_1%微调模型时遇到“the model `xxxxx` does not exist”错误,这通常是由于选择了错误的api端点。解决此问题的关键在于识别您的微调模型所基于的原始模型类型:若基于gpt-3.5 turbo,应使用chat completions api;若…

    2025年12月20日
    000
  • LangChain HNSWLib 向量存储机制详解:内存与本地持久化

    本文深入探讨LangChain中HNSWLib向量存储的内部机制。HNSWLib作为内存型向量存储,其数据实际存储在项目运行的宿主服务器内存中,而非LangChain官方服务器。同时,它支持将向量数据持久化到本地文件系统,确保数据的安全与可恢复性。 在构建基于大型语言模型(LLM)的应用时,向量存储…

    2025年12月20日
    000
  • LangChain HNSWLib 向量存储机制与数据安全深度解析

    hnswlib作为langchain的内存型向量存储,其数据实际存储在运行项目的服务器内存中,而非langchain官方服务器。这意味着数据安全性与您的部署环境直接相关。通过持久化操作,hnswlib数据可保存为本地文件,确保数据可控性。理解hnswlib的存储原理对于数据安全至关重要,它强调了用户…

    2025年12月20日
    000
  • LangChain中HNSWLib向量存储机制解析与数据持久化

    本文深入探讨了langchain中hnswlib向量存储的内部机制,重点阐明其“内存存储”的实际含义——数据存储于项目运行的宿主服务器内存中,而非langchain的服务器。文章将详细介绍hnswlib数据的持久化方法,并通过示例代码指导用户如何安全地管理和保存向量数据,确保数据安全与应用稳定性。 …

    2025年12月20日
    000
  • LangChain HNSWLib 向量存储机制与数据持久化指南

    本文详细解析langchain中hnswlib向量存储的工作原理,明确其作为内存存储的特性,指出数据实际存储在项目部署的服务器上,而非langchain官方服务器。同时,文章将指导如何通过save_local()方法将内存中的向量数据持久化到本地文件,确保数据安全与可靠性,并探讨在实际应用中的注意事…

    2025年12月20日
    000
  • 理解LangChain向量存储:HNSWLib的本地数据持久化机制

    本文深入探讨langchain中hnswlib向量存储的内部机制与数据安全考量。我们将澄清“in-memory”存储的含义,解释hnswlib数据如何存储于项目宿主服务器的内存中,而非langchain官方服务器。同时,文章将演示如何通过持久化操作将这些内存数据保存至本地文件系统,确保数据可控性和安…

    2025年12月20日
    000
  • Discord.js V14机器人DM消息处理指南:解决私信不响应问题

    本文旨在解决discord.js v14机器人无法检测和响应私信(dm)的常见问题。核心在于,未缓存的dm频道需要通过在客户端配置中添加partials.channel来显式处理。文章将详细阐述dm消息处理机制,提供正确的意图(intents)和部分(partials)配置示例,并包含一个完整的dm…

    2025年12月20日
    000
  • 解决Discord.js V14机器人无法检测私聊消息的问题

    在discord.js v14中,机器人无法检测私聊(dm)消息是一个常见问题,即使启用了`directmessages`意图。本文将深入探讨此问题的原因,并提供一个完整的解决方案。核心在于理解并正确配置`partials.channel`和`partials.message`,以确保机器人能够处理…

    2025年12月20日
    000
  • Discord.js V14:解决机器人无法在私信中检测消息的问题

    本文旨在解决Discord.js V14版本中,机器人无法正确检测并响应私信消息的问题。通过配置必要的 Gateway Intent Bits 和 Partials,确保机器人能够缓存并处理私信频道和消息,从而实现私信交互功能。本文提供详细的配置步骤和代码示例,帮助开发者快速解决此问题。 在使用 D…

    2025年12月20日
    000
  • Discord.js机器人私信交互:确保DM消息正常处理

    Discord.js v14机器人未能正确处理私信(DM)消息,即使已配置相关意图。核心问题在于DM频道可能未被缓存,导致机器人无法接收到这些消息。本文将详细讲解如何通过在Discord客户端配置中添加`Partials.Channel`来解决此问题,确保机器人能够可靠地监听并响应用户在私信中的交互…

    2025年12月20日
    000
  • 解决 ChatGPT 扩展选择器失效问题:一个实战教程

    本文旨在帮助开发者解决 ChatGPT 网页更新导致扩展选择器失效的问题。通过分析问题原因,提供利用开发者工具查找新选择器的方法,并展示了使用 getElementsByClassName() 替代 querySelector() 的解决方案,以确保扩展功能在 ChatGPT 最新版本中正常运行。 …

    2025年12月20日
    000
  • ChatGPT 扩展失效:定位新版选择器并修复

    本文旨在帮助开发者解决因 ChatGPT 网页更新导致扩展失效的问题。通过分析失效原因,提供利用开发者工具定位新版选择器的实用方法,并给出示例代码,帮助开发者快速修复扩展,恢复其功能。 当 ChatGPT 网页更新时,依赖于特定 CSS 选择器的扩展程序可能会失效。这通常是因为网页结构的改变导致原有…

    2025年12月20日
    000

发表回复

登录后才能评论
关注微信