与ChatGPT共享敏感业务数据可能存在风险

随着 AI 聊天机器人潜力的来龙去脉继续成为头条新闻,围绕 ChatGPT 的狂热仍然处于狂热状态。引起安全领域许多人注意的一个问题是,该技术对敏感业务数据的摄取是否会给组织带来风险。有人担心,如果有人输入敏感信息——季度报告、内部演示材料、销售数字等——并要求 ChatGPT 在其周围书写文本,那么任何人只要向 ChatGPT 询问就可以获得该公司的信息之后。

​其影响可能是深远的:想象一下,正在处理一个内部演示文稿,其中包含新的公司数据,揭示了一个要在董事会会议上讨论的公司问题。将这些专有信息泄露出去可能会破坏股价、消费者态度和客户信心。更糟糕的是,泄露的议程上的法律项目可能会使公司承担真正的责任。但是这些事情中的任何一个真的可以仅仅通过放入聊天机器人中的东西而发生吗?

研究公司 Cyberhaven 在 2 月份探索了这一概念,重点关注 OpenAI 如何使用人们输入 ChatGPT 的内容作为训练数据来改进其技术,输出与输入的内容非常相似。Cyberhaven 声称,如果第三方根据高管提供的信息向 ChatGPT 询问某些问题,输入 ChatGPT 的机密数据可能会泄露给第三方。

ChatGPT 不存储用户的输入数据——是吗?

英国国家网络安全中心 (NCSC)在 3 月份分享了对此事的进一步见解,指出 ChatGPT 和其他大型语言模型 (LLM) 目前不会自动将查询中的信息添加到模型中供其他人查询。也就是说,在查询中包含信息不会导致将潜在的私有数据合并到 LLM 中。“但是,查询将对提供 LLM 的组织可见(在 ChatGPT 的情况下,对 OpenAI 也是如此),”它写道。

“这些查询已被存储,几乎肯定会在某个时候用于开发 LLM 服务或模型。这可能意味着 LLM 提供商(或其合作伙伴/承包商)能够读取查询,并可能以某种方式将它们合并到未来的版本中,”它补充道。NCSC 写道,另一个风险随着越来越多的组织生产和使用 LLM 而增加,即在线存储的查询可能被黑客攻击、泄露或意外公开。

最终,对于 ChatGPT 输入和使用的敏感业务数据的担忧是有真正原因的,尽管风险可能不像某些头条新闻所描述的那样普遍。

将敏感数据输入 ChatGPT 的可能风险

法学硕士表现出一种称为情境学习的涌现行为。在会话期间,当模型接收到输入时,它可以根据这些输入中包含的上下文来执行任务。“这很可能是人们担心信息泄露时所指的现象。然而,来自一个用户会话的信息不可能泄露给另一个用户,”WithSecure 的高级研究员 Andy Patel 告诉 CSO。“另一个担忧是,输入到 ChatGPT 界面的提示将被收集并用于未来的训练数据。”

帕特尔说,虽然担心聊天机器人会摄取然后反刍敏感信息是有道理的,但需要训练一个新模型来整合这些数据。训练 LLM 是一个昂贵且漫长的过程,他说如果在不久的将来用 ChatGPT 收集的数据训练模型,他会感到惊讶。“如果最终创建了一个包含收集的 ChatGPT 提示的新模型,我们的恐惧就会转向成员推理攻击。此类攻击有可能暴露训练数据中的信用卡号或个人信息。但是,没有针对支持 ChatGPT 和其他类似系统的 LLM 证明成员推理攻击。” 这意味着未来的模型极不可能容易受到成员推理攻击。

与 AI 的第三方链接可能会暴露数据

Orange Cyberdefense 的高级安全研究员 Wicus Ross 表示,问题最有可能是由未明确声明其隐私政策的外部提供商引起的,因此将它们与其他安全工具和平台一起使用可能会使任何隐私数据面临风险。“Slack 和 Microsoft Teams 等 SaaS 平台具有清晰的数据和处理边界,数据暴露给第三方的风险较低。然而,如果使用需要与用户交互的第三方插件或机器人来增强服务,无论它们是否与人工智能相关联,这些清晰的界限很快就会变得模糊,”他说。“在没有第三方处理者保证信息不会泄露的明确声明的情况下,你必须假设它不再是私人的。”

ChatGPT ChatGPT

最最强大的AI聊天机器人程序,ChatGPT不单是聊天机器人,还能进行撰写邮件、视频脚本、文案、翻译、代码等任务。

ChatGPT 211 查看详情 ChatGPT

Netskope 的 EMEA 首席信息安全官 Neil Thacker 告诉 CSO,除了普通用户共享的敏感数据外,公司还应该意识到提示注入攻击,这些攻击可能会泄露开发人员在调整工具时提供的先前指令,或者使其忽略先前编程的指令。“最近的例子包括 Twitter 恶作剧者改变了机器人的行为和Bing Chat 的问题,研究人员在其中找到了一种方法,可以让 ChatGPT 披露之前可能由微软编写的应该隐藏的指令。”

控制提交给 ChatGPT 的数据

据 Cyberhaven 称,敏感数据目前占员工粘贴到 ChatGPT 的内容的 11%,平均每家公司每周向 ChatGPT 泄露敏感数据数百次。“ChatGPT 正在从炒作走向现实世界,组织正在尝试在其业务中实际实施以加入其他基于 ML/AI 的工具,但需要谨慎行事,尤其是在共享机密信息时,”萨克说。“应该考虑数据所有权的各个方面,以及如果托管数据的组织遭到破坏会产生什么潜在影响。作为一项简单的练习,信息安全专业人员至少应该能够识别在这些服务遭到破坏时可能访问的数据类别。”

最终,企业有责任确保其用户充分了解哪些信息应该和不应该向 ChatGPT 披露。NCSC 表示,组织应该非常小心他们选择在提示中提交的数据:“你应该确保那些想要尝试 LLM 的人能够,但不会将组织数据置于风险之中。”

警告员工聊天机器人的潜在危险

然而,Cyberhaven 警告说,识别和控制员工提交给 ChatGPT 的数据并非没有挑战。“当员工将公司数据输入 ChatGPT 时,他们不会上传文件,而是将内容复制并粘贴到他们的网络浏览器中。许多安全产品都是围绕保护文件(标记为机密)不被上传而设计的,但是一旦内容被从文件中复制出来,他们就无法对其进行跟踪,”它写道。此外,Cyberhaven 表示,进入 ChatGPT 的公司数据通常不包含安全工具寻找的可识别模式,例如信用卡号或社会保险号。“在不了解其上下文的情况下,今天的安全工具无法区分输入自助餐厅菜单的人和公司的并购计划。”

Thacker 说,为了提高可见性,组织应该在其安全 Web 网关 (SWG) 上实施策略来识别人工智能工具的使用,并且还可以应用数据丢失防护 (DLP) 策略来识别哪些数据被提交给这些工具。

Jamf 投资组合战略副总裁 Michael Covington 说,组织应该更新信息保护政策,以确保可以接受的机密数据处理程序的应用程序类型得到妥善记录。“控制信息流始于有据可查且知情的政策,”他说。“此外,组织应该探索如何利用这些新技术以深思熟虑的方式改善他们的业务。不要因为恐惧和不确定性而回避这些服务,而是要投入一些人员来探索显示潜力的新工具,这样您就可以及早了解风险,并确保在早期的最终用户采用者想要开始使用这些工具时提供足够的保护”

以上就是与ChatGPT共享敏感业务数据可能存在风险的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/558938.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月10日 00:03:03
下一篇 2025年11月10日 00:06:39

相关推荐

  • ai做html怎么运行_AI生成html运行步骤【教程】

    答案是使用AI生成HTML代码后,将其保存为.html文件并用浏览器打开即可运行。具体步骤为:1. 在AI工具中输入需求生成HTML代码;2. 将代码复制到文本编辑器并另存为index.html,编码选UTF-8,类型选“所有文件”;3. 双击该文件用浏览器打开,若无法正常显示需检查文件后缀、编码及…

    2025年12月23日
    000
  • p5.js中类方法声明的语法解析与常见错误修复指南

    本文旨在解决从java processing迁移至p5.js时常见的语法错误,特别是类内部方法声明不当引发的问题。我们将深入探讨javascript中全局函数与类方法声明的语法差异,提供清晰的示例代码,并指导如何识别和修复“unexpected token”及“declaration or stat…

    2025年12月21日
    000
  • p5.js中类方法声明的语法修正与迁移指南

    本文深入探讨了将Processing/Java代码转换为p5.js时,因JavaScript类方法声明语法差异而引发的常见错误。我们将重点解析`Unexpected token`和`Declaration or statement expected`等错误信息,明确全局函数与类成员方法在JavaSc…

    2025年12月21日
    000
  • TypeScript泛型函数中复杂对象结构类型推断的精确控制

    本文探讨了在typescript中处理复杂嵌套对象结构时,如何为泛型函数实现精确的类型推断。通过一个具体的汽车品牌和车型数据场景,我们分析了`object.values`等操作可能导致类型信息丢失的问题。核心解决方案是利用映射类型(mapped types)重构数据结构,以显式地建立泛型键与对应值之…

    2025年12月21日
    000
  • 解决 ChatGPT 扩展选择器失效问题:一个实战教程

    本文旨在帮助开发者解决 ChatGPT 网页更新导致扩展选择器失效的问题。通过分析问题原因,提供利用开发者工具查找新选择器的方法,并展示了使用 getElementsByClassName() 替代 querySelector() 的解决方案,以确保扩展功能在 ChatGPT 最新版本中正常运行。 …

    2025年12月20日
    000
  • ChatGPT 扩展失效:定位新版选择器并修复

    本文旨在帮助开发者解决因 ChatGPT 网页更新导致扩展失效的问题。通过分析失效原因,提供利用开发者工具定位新版选择器的实用方法,并给出示例代码,帮助开发者快速修复扩展,恢复其功能。 当 ChatGPT 网页更新时,依赖于特定 CSS 选择器的扩展程序可能会失效。这通常是因为网页结构的改变导致原有…

    2025年12月20日
    000
  • ChatGPT 扩展失效?定位新版选择器的实用指南

    本文旨在帮助开发者解决因 ChatGPT 网页更新导致扩展失效的问题。重点讲解如何定位新版 ChatGPT 网页中的目标元素,并提供使用 getElementsByClassName() 方法的示例代码,帮助开发者快速修复和更新扩展,使其重新适配新版 ChatGPT 网页。 ChatGPT 网页频繁…

    2025年12月20日
    000
  • ChatGPT 扩展插件选择器失效问题排查与解决方案

    本文旨在帮助开发者解决 ChatGPT 扩展插件因页面更新导致选择器失效的问题。通过分析页面结构变化,提供使用 getElementsByClassName() 方法替代 querySelector() 的解决方案,并提供在不同浏览器环境下调整选择器的思路,确保扩展插件的稳定运行。 由于 ChatG…

    2025年12月20日
    000
  • 应对ChatGPT界面更新:浏览器扩展选择器失效的定位与修复

    本文针对ChatGPT界面更新导致浏览器扩展选择器失效的问题,提供了一套定位与修复策略。核心在于利用浏览器开发者工具识别新的DOM结构和类名,并建议从不稳定的querySelector转向更适合动态UI的getElementsByClassName等方法,以确保扩展的稳定运行。 在开发浏览器扩展时,…

    2025年12月20日
    000
  • LINE Bot 多消息类型回复:文本与贴图的组合发送指南

    本文旨在解决 LINE Bot 开发中,通过 Messaging API 组合发送文本消息和贴图时遇到的 400 Bad Request 错误。核心问题在于对同一 replyToken 进行多次 replyMessage 调用,而正确的做法是利用 API 支持在单次调用中发送一个消息数组,从而实现文…

    2025年12月20日
    000
  • 使用LINE Bot与OpenAI API发送文本和贴图的完整教程

    本文详细介绍了如何在LINE Bot中集成OpenAI API生成文本回复,并在此基础上发送LINE贴图。核心挑战在于LINE Messaging API的replyToken通常只能使用一次,导致连续发送文本和贴图时出现400错误。解决方案是利用API支持一次性发送多条消息的特性,将文本和贴图消息…

    2025年12月20日
    000
  • 优化OpenAI API:解决GPT应用中意外代码生成问题

    本教程旨在解决使用OpenAI GPT-3.5 API(如text-davinci-003)时,模型意外生成无关代码的问题。文章强调了选择更适合代码生成任务的模型(如gpt-3.5-turbo或gpt-4)的重要性,并深入探讨了通过优化提示词(Prompt Engineering)来提升模型响应质量…

    2025年12月20日
    200
  • 解决 Next.js API 路由无法访问 Azure 云函数的问题

    第一段引用上面的摘要: 本文旨在帮助开发者解决 Next.js API 路由无法访问 Microsoft Azure 云函数的问题。主要原因通常是由于 process.env.VERCEL_URL 环境变量配置不正确,导致 Next.js 应用尝试通过 IPv6 的本地回环地址 ::1 连接云函数,…

    2025年12月20日
    000
  • 在Next.js API路由中高效传输OpenAI流式响应到客户端

    本文详细介绍了如何在Next.js应用的API路由中,以流式传输的方式将OpenAI的响应发送给客户端,从而实现类似ChatGPT的实时交互体验。针对旧版Node.js环境限制和API密钥暴露等常见问题,我们提出了一种基于Next.js App Router和Web标准API(如ReadableSt…

    2025年12月20日
    000
  • Node.js ES Modules中openai导入异常及误导性错误排查

    本文探讨了在Node.js ES Modules (ESM) 环境下使用openai npm包时,遇到的一个看似是SyntaxError的模块导入问题。文章详细分析了问题现象,揭示了其背后实则是一个与导入语句无关的运行时逻辑错误,并解释了为何这类深层问题可能导致误导性的编译或模块加载错误。通过代码示…

    2025年12月20日
    000
  • 深入解析Node.js中误导性模块导入错误的排查与解决方案

    本文深入探讨了Node.js项目中一个看似是模块导入错误(SyntaxError: The requested module ‘openai’ does not provide an export named ‘Configuration’),但实际根…

    2025年12月20日
    000
  • 探索chatgpt开发的挑战和局限性

    ChatGPT:机遇与挑战并存 OpenAI研发的ChatGPT彻底改变了人机交互方式,其应用范围涵盖客户支持、内容创作等诸多领域。然而,ChatGPT的发展并非一帆风顺,仍面临诸多挑战与局限。本文将深入探讨这些问题,并提出相应的应对策略。 1. 训练数据限制 ChatGPT的核心局限在于其依赖于预…

    2025年12月19日
    000
  • DeepSeek和Chatgpt可以&#t正确:如何使用元数据更新Cloudflare KV对

    使用cloudflare kv更新键值对及其元数据 本文提供使用Cloudflare KV API更新键值对及其元数据的代码示例。 虽然大型语言模型可以生成代码,但仔细阅读官方文档仍然至关重要。 以下代码片段演示了如何使用fetch API 更新Cloudflare KV中的键值对,同时更新其元数据…

    2025年12月19日
    000
  • RSS订阅如何共享?

    共享RSS订阅可通过云端阅读器功能、OPML文件导出导入或自建RSS服务实现。云端工具如Feedly支持共享文件夹与团队协作,OPML提供跨平台通用备份与迁移,自建服务则保障数据隐私与定制化控制,适用于不同需求场景。 RSS订阅的共享,通常不是一个直接的“共享按钮”功能,而更多是基于特定服务或文件导…

    2025年12月17日
    000
  • RSS如何实现动态内容过滤?

    要实现rss动态内容过滤,核心在于引入“智能代理”对原始feed进行二次处理。具体路径包括:1.使用内置过滤功能的rss阅读器,如feedly、inoreader等,适合简单筛选;2.借助ifttt或zapier等自动化平台作为中间件,支持条件判断和内容分发;3.自建解析器,利用python、nod…

    2025年12月17日
    000

发表回复

登录后才能评论
关注微信