本项目基于飞桨2.0,使用food-11数据集(含11类食品,共16643张图片)训练分类模型。通过搭建简单CNN,经数据预处理(求均值标准差、归一化等)、调整训练参数优化,最终在验证集达到50%-55%正确率,实现对面包、肉类等11类食品的分类,并完成模型保存与测试展示。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于飞桨2.0的食品图片分类实战应用
项目描述
本项目使用的是李宏毅机器学习中作业三的数据集
包含(面包,乳制品,甜点,鸡蛋,油炸食品,肉类,面条/意大利面,米饭,海鲜,汤,蔬菜/水果)十一类的食品数据,对其进行训练分类
搭建训练一个简单的卷积神经网络,实现这十一类食物图片的分类
项目的优化
1.对各通道进行求均值和标准差
2.更改训练参数
课程链接
课程链接:https://aistudio.baidu.com/aistudio/course/introduce/1978
数据集介绍
本次使用的数据集为food-11数据集,共有11类
Bread, Dairy product, Dessert, Egg, Fried food, Meat, Noodles/Pasta, Rice, Seafood, Soup, and Vegetable/Fruit.
(面包,乳制品,甜点,鸡蛋,油炸食品,肉类,面条/意大利面,米饭,海鲜,汤,蔬菜/水果)
Training set: 9866张
Validation set: 3430张
Testing set: 3347张
数据格式
下载 zip 档后解压缩会有三个资料夹,分别为training、validation 以及 testing
training 以及 validation 中的照片名称格式为 [类别]_[编号].jpg,例如 3_100.jpg 即为类别 3 的照片(编号不重要)
In [ ]
!unzip -d work data/data76472/food-11.zip # 解压缩food-11数据集
In [ ]
!rm -rf work/__MACOSX
第一步 必要的库引入,数据读取
读取数据,新建路径+标签的txt的三个文件核实数据量与题目所给是否相同In [1]
import osimport paddleimport paddle.vision.transforms as Timport numpy as npfrom PIL import Imageimport paddleimport paddle.nn.functional as Ffrom sklearn.utils import shuffle#在python中运行代码经常会遇到的情况是——代码可以正常运行但是会提示警告,有时特别讨厌。#那么如何来控制警告输出呢?其实很简单,python通过调用warnings模块中定义的warn()函数来发出警告。我们可以通过警告过滤器进行控制是否发出警告消息。import warningswarnings.filterwarnings("ignore")data_path = 'work/food-11/' # 设置初始文件地址character_folders = os.listdir(data_path) # 查看地址下文件夹# 每次运行前删除txt,重新新建标签列表if(os.path.exists('./training_set.txt')): # 判断有误文件 os.remove('./training_set.txt') # 删除文件if(os.path.exists('./validation_set.txt')): os.remove('./validation_set.txt')if(os.path.exists('./testing_set.txt')): os.remove('./testing_set.txt')for character_folder in character_folders: #循环文件夹列表 with open(f'./{character_folder}_set.txt', 'a') as f_train: # 新建文档以追加的形式写入 character_imgs = os.listdir(os.path.join(data_path,character_folder)) # 读取文件夹下面的内容 count = 0 if character_folder in 'testing': # 检查是否是测试集 for img in character_imgs: # 循环列表 f_train.write(os.path.join(data_path,character_folder,img) + 'n') # 把地址写入文档 count += 1 print(character_folder,count) else: for img in character_imgs: # 检查是否是训练集和测试集 f_train.write(os.path.join(data_path,character_folder,img) + 't' + img[0:img.rfind('_', 1)] + 'n') # 写入地址及标签 count += 1 print(character_folder,count)
testing 3347training 9866validation 3430
第二步 数据预处理
下面使用paddle.vision.transforms.Compose做数据预处理,主要是这几个部分:
以RGB格式加载图片将图片resize,从224×224变成100×100进行transpose操作,从HWC格式转变成CHW格式将图片的所有像素值进行除以255进行归一化对各通道进行减均值、除标准差In [2]
# 只有第一次需要执行 一次需要一分钟多import numpy as npimport cv2import os img_h, img_w = 100, 100 #适当调整,影响不大means, stdevs = [], []img_list = [] imgs_path = 'work/food-11/training'imgs_path_list = os.listdir(imgs_path) len_ = len(imgs_path_list)i = 0for item in imgs_path_list: img = cv2.imread(os.path.join(imgs_path,item)) img = cv2.resize(img,(img_w,img_h)) img = img[:, :, :, np.newaxis] img_list.append(img) i += 1 # print(i,'/',len_)imgs_path = 'work/food-11/testing'imgs_path_list = os.listdir(imgs_path) len_ = len(imgs_path_list)i = 0for item in imgs_path_list: img = cv2.imread(os.path.join(imgs_path,item)) img = cv2.resize(img,(img_w,img_h)) img = img[:, :, :, np.newaxis] img_list.append(img) i += 1imgs = np.concatenate(img_list, axis=3)imgs = imgs.astype(np.float32) / 255. for i in range(3): pixels = imgs[:, :, i, :].ravel() # 拉成一行 means.append(np.mean(pixels)) stdevs.append(np.std(pixels)) # BGR --> RGB , CV读取的需要转换,PIL读取的不用转换means.reverse()stdevs.reverse() print("normMean = {}".format(means))print("normStd = {}".format(stdevs))# 只需要执行一次代码记录住数据即可# normMean = [0.5560434, 0.4515875, 0.34473255]# normStd = [0.27080873, 0.2738704, 0.280732]
normMean = [0.5560434, 0.4515875, 0.34473255]normStd = [0.27080873, 0.2738704, 0.280732]
In [3]
# 定义数据预处理data_transforms = T.Compose([ T.Resize(size=(100, 100)), T.RandomHorizontalFlip(100), T.RandomVerticalFlip(100), T.RandomRotation(90), T.CenterCrop(100), T.Transpose(), # HWC -> CHW T.Normalize( mean=[0.5560434, 0.4515875, 0.34473255], #归一化 上个模块所求的均值与标准差 std=[0.27080873, 0.2738704, 0.280732], to_rgb=True) #计算过程:output[channel] = (input[channel] - mean[channel]) / std[channel]])
第三步 继承paddle.io.Dataset对数据集做处理
对数据集进行处理
In [4]
class FoodDataset(paddle.io.Dataset): """ 数据集类的定义 """ def __init__(self, mode='training_set'): """ 初始化函数 """ self.data = [] with open(f'{mode}_set.txt') as f: for line in f.readlines(): info = line.strip().split('t') if len(info) > 0: self.data.append([info[0].strip(), info[1].strip()]) def __getitem__(self, index): """ 读取图片,对图片进行归一化处理,返回图片和标签 """ image_file, label = self.data[index] # 获取数据 img = Image.open(image_file).convert('RGB') # 读取图片 return data_transforms(img).astype('float32'), np.array(label, dtype='int64') def __len__(self): """ 获取样本总数 """ return len(self.data)train_dataset = FoodDataset(mode='training')train_loader = paddle.io.DataLoader(train_dataset, places=paddle.CPUPlace(), batch_size=64, shuffle=True, num_workers=0)eval_dataset = FoodDataset(mode='validation')val_loader = paddle.io.DataLoader(train_dataset, places=paddle.CPUPlace(), batch_size=64, shuffle=True, num_workers=0)# 查看训练和验证集数据的大小print('train size:', train_dataset.__len__())print('eval size:', eval_dataset.__len__())
train size: 9866eval size: 3430
第四步 自行搭建CNN神经网络
In [5]
# 继承paddle.nn.Layer类,用于搭建模型class MyCNN(paddle.nn.Layer): def __init__(self): super(MyCNN,self).__init__() self.conv0 = paddle.nn.Conv2D(in_channels=3, out_channels=20, kernel_size=5, padding=0) # 二维卷积层 self.pool0 = paddle.nn.MaxPool2D(kernel_size =2, stride =2) # 最大池化层 self._batch_norm_0 = paddle.nn.BatchNorm2D(num_features = 20) # 归一层 self.conv1 = paddle.nn.Conv2D(in_channels=20, out_channels=50, kernel_size=5, padding=0) self.pool1 = paddle.nn.MaxPool2D(kernel_size =2, stride =2) self._batch_norm_1 = paddle.nn.BatchNorm2D(num_features = 50) self.conv2 = paddle.nn.Conv2D(in_channels=50, out_channels=50, kernel_size=5, padding=0) self.pool2 = paddle.nn.MaxPool2D(kernel_size =2, stride =2) self.fc1 = paddle.nn.Linear(in_features=4050, out_features=218) # 线性层 self.fc2 = paddle.nn.Linear(in_features=218, out_features=100) self.fc3 = paddle.nn.Linear(in_features=100, out_features=11) def forward(self,input): # 将输入数据的样子该变成[1,3,100,100] input = paddle.reshape(input,shape=[-1,3,100,100]) # 转换维读 # print(input.shape) x = self.conv0(input) #数据输入卷积层 x = F.relu(x) # 激活层 x = self.pool0(x) # 池化层 x = self._batch_norm_0(x) # 归一层 x = self.conv1(x) x = F.relu(x) x = self.pool1(x) x = self._batch_norm_1(x) x = self.conv2(x) x = F.relu(x) x = self.pool2(x) x = paddle.reshape(x, [x.shape[0], -1]) # print(x.shape) x = self.fc1(x) # 线性层 x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) #y = F.softmax(x) # 分类器 return x
In [6]
network = MyCNN() # 模型实例化paddle.summary(network, (1,3,100,100)) # 模型结构查看
--------------------------------------------------------------------------- Layer (type) Input Shape Output Shape Param # =========================================================================== Conv2D-1 [[1, 3, 100, 100]] [1, 20, 96, 96] 1,520 MaxPool2D-1 [[1, 20, 96, 96]] [1, 20, 48, 48] 0 BatchNorm2D-1 [[1, 20, 48, 48]] [1, 20, 48, 48] 80 Conv2D-2 [[1, 20, 48, 48]] [1, 50, 44, 44] 25,050 MaxPool2D-2 [[1, 50, 44, 44]] [1, 50, 22, 22] 0 BatchNorm2D-2 [[1, 50, 22, 22]] [1, 50, 22, 22] 200 Conv2D-3 [[1, 50, 22, 22]] [1, 50, 18, 18] 62,550 MaxPool2D-3 [[1, 50, 18, 18]] [1, 50, 9, 9] 0 Linear-1 [[1, 4050]] [1, 218] 883,118 Linear-2 [[1, 218]] [1, 100] 21,900 Linear-3 [[1, 100]] [1, 11] 1,111 ===========================================================================Total params: 995,529Trainable params: 995,249Non-trainable params: 280---------------------------------------------------------------------------Input size (MB): 0.11Forward/backward pass size (MB): 3.37Params size (MB): 3.80Estimated Total Size (MB): 7.29---------------------------------------------------------------------------
{'total_params': 995529, 'trainable_params': 995249}
第五步 模型配置以及训练
运行时长: 3小时22分钟19秒5毫秒
In [7]
# 实例化模型inputs = paddle.static.InputSpec(shape=[None, 3, 100, 100], name='inputs')labels = paddle.static.InputSpec(shape=[None, 11], name='labels')model = paddle.Model(network,inputs,labels)# 模型训练相关配置,准备损失计算方法,优化器和精度计算方法# 定义优化器scheduler = paddle.optimizer.lr.LinearWarmup( learning_rate=0.001, warmup_steps=100, start_lr=0, end_lr=0.001, verbose=True)optim = paddle.optimizer.SGD(learning_rate=scheduler, parameters=model.parameters())# 配置模型model.prepare( optim, paddle.nn.CrossEntropyLoss(), paddle.metric.Accuracy() )visualdl = paddle.callbacks.VisualDL(log_dir='visualdl_log')# 模型训练与评估model.fit( train_loader, # 训练数据集 val_loader, # 评估数据集 epochs=100, # 训练的总轮次 batch_size=128, # 训练使用的批大小 verbose=1, # 日志展示形式 callbacks=[visualdl]) # 设置可视化# 模型评估model.evaluate(eval_dataset, batch_size=128, verbose=1)#已运行,结果太长,已经删除,数据在下图显示
多次运行,在验证集正确率达到0.50-0.55之间
第六步 保存模型
In [8]
model.save('finetuning/mnist') # 保存模型
第七步 测试集案例展示
In [9]
def opening(): # 读取图片函数 with open(f'testing_set.txt') as f: #读取文件夹 test_img = [] txt = [] for line in f.readlines(): # 循环读取每一行 img = Image.open(line[:-1]) # 打开图片 img = data_transforms(img).astype('float32') txt.append(line[:-1]) # 生成列表 test_img.append(img) return txt,test_imgimg_path, img = opening() # 读取列表from PIL import Imagemodel_state_dict = paddle.load('finetuning/mnist.pdparams') # 读取模型model = MyCNN() # 实例化模型model.set_state_dict(model_state_dict) model.eval()
In [14]
site = 10 # 读取图片位置ceshi = model(paddle.to_tensor(img[site])) # 测试print('预测的结果为:', np.argmax(ceshi.numpy())) # 获取值value = ["面包","乳制品","甜点","鸡蛋","油炸食品","肉类","面条/意大利面","米饭","海鲜","汤","蔬菜/水果"]print(' ', value[np.argmax(ceshi.numpy())])Image.open(img_path[site]) # 显示图片
预测的结果为: 9 汤
以上就是基于飞桨2.0的食品图片分类实战应用的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/59055.html
微信扫一扫
支付宝扫一扫