【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验!

本文介绍基于Paddle训练的RCAN模型用于遥感图像四倍超分辨率重建的项目。涵盖项目背景,说明超分在遥感影像应用中的意义,还详述准备工作(克隆代码、准备数据、安装依赖等)、模型训练与预测过程,以及如何快速体验模型对图像的重建效果。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【ai达人创造营第二期】以rcan模型对遥感图像超分辨率重建,可以直接体验! - 创想鸟

以RCAN模型对遥感图像超分辨率重建,可以直接体验!

一、项目背景

意义与应用场景:单幅影像超分辨率重建一直是low-level视觉领域中一个比较热门的任务,其可以成为修复老电影、老照片的技术手段,也可以为图像分割、目标检测等下游任务提供质量较高的数据。应用的场景也比较广泛,例如:在船舶检测和分类等诸多遥感影像应用中,提高遥感影像分辨率具有重要意义。

如下表所示,当你需要对遥感图像中的车辆进行检测时,哪一种图像更好呢?当你要进行车道线提取时,哪一种的图像你更喜欢呢?

低分辨率 高分辨率

@@##@@                    @@##@@                    @@##@@                    @@##@@                    答案是显而易见的,但如果你只有左边这列的低分辨率影像呢? 你该何去何从(手动狗头)?不要怕,可以尝试用超分辨率重建来帮你!本项目将展示用paddle训练的RCAN模型来重建四倍的遥感影像,先上效果图!

低分辨率 RCAN重建 高分辨率

@@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    @@##@@                    效果是不是不错呢?那就往下看看这怎么训练和预测的吧。注意:本项目不涉及paddlel复现RCAN模型的原理,若感兴趣的小伙伴可以去这个基于PaddleGAN框架复现超分辨率网络RCAN并对遥感影像超分项目看看

二、准备工作

在进行训练之前首先要克隆代码、准备数据以及安装环境依赖之前我已经在github以及gitee上上传了相应的代码,做成了paddle复现RCAN模型的仓库github地址:https://github.com/kongdebug/RCAN-Paddlegitee地址:https://gitee.com/jia_jianghao_gege/RCAN-Paddle项目所用数据集地址:https://aistudio.baidu.com/aistudio/datasetdetail/129011 ,简介有介绍该数据集如何产生In [2]

# 从码云上克隆仓库!git clone https://gitee.com/jia_jianghao_gege/RCAN-Paddle.git

       

正克隆到 'RCAN-Paddle'...remote: Enumerating objects: 457, done.remote: Total 457 (delta 0), reused 0 (delta 0), pack-reused 457接收对象中: 100% (457/457), 25.47 MiB | 2.07 MiB/s, 完成.处理 delta 中: 100% (77/77), 完成.检查连接... 完成。

       In [ ]

# 解压数据集到指定文件夹中,大概一分钟!unzip -oq data/data129011/RSdata_for_SR.zip -d RCAN-Paddle/data/

   同时还需要设置训练的配置文件,我已经写好放在work文件夹里,可以执行下面的命令复制文件到指定文件夹In [4]

# 运行下列命令,将准备好的配置文件复制到RCAN-Paddle/configs文件夹下!cp work/rcan_x4_rssr.yaml RCAN-Paddle/configs/

   In [ ]

# 安装依赖%cd RCAN-Paddle/!pip install -r requirements.txt

   

三、模型训练与预测

由于RCAN模型很难训练,很容易崩,所以使用我预训练好的checkpoint来接着训练,checkpoint保存在work/checkpoint文件夹里运行下列命令即可训练,训练的模型权重文件保存在RCAN-Paddle/output_dir/的文件夹下In [ ]

# 运行该语句训练模型!python -u tools/main.py --config-file configs/rcan_x4_rssr.yaml --resume ../work/checkpoint/iter_270000_checkpoint.pdparams

   训练达到预期效果后,可以使用模型来测试。我已经提前将权重文件放在work/weight文件夹下,运行下行代码对测试集test_LR进行测试测试的结果也保存在output_dir文件夹下 测试的结果:PSNR:inf SSIM:0.9709,属于有点高了,应该是PaddleGAN的bug,但是本项目是为了展示对遥感影像重建的效果的,无伤大雅,要是想知道怎么解决,参照这个基于PaddleGAN框架复现超分辨率网络RCAN并对遥感影像超分项目,这里不做重复In [36]

# 执行预测,注意,若要保存结果,将rcan_x4_rssr.yaml文件中的第84行设置为True%cd RCAN-Paddle/!python -u tools/main.py --config-file configs/rcan_x4_rssr.yaml --evaluate-only --load ../work/weight/rcan_rssr_x4.pdparams

       

/home/aistudio/RCAN-Paddle[02/22 16:23:07] ppgan INFO: Configs: {'total_iters': 400000, 'output_dir': 'output_dir/rcan_x4_rssr-2022-02-22-16-23', 'min_max': (0.0, 255.0), 'model': {'name': 'BaseSRModel', 'generator': {'name': 'RCAN'}, 'pixel_criterion': {'name': 'L1Loss'}}, 'dataset': {'train': {'name': 'SRDataset', 'gt_folder': 'data/RSdata_for_SR/trian_HR', 'lq_folder': 'data/RSdata_for_SR/train_LR/x4', 'num_workers': 4, 'batch_size': 16, 'scale': 4, 'preprocess': [{'name': 'LoadImageFromFile', 'key': 'lq'}, {'name': 'LoadImageFromFile', 'key': 'gt'}, {'name': 'Transforms', 'input_keys': ['lq', 'gt'], 'pipeline': [{'name': 'SRPairedRandomCrop', 'gt_patch_size': 192, 'scale': 4, 'keys': ['image', 'image']}, {'name': 'PairedRandomHorizontalFlip', 'keys': ['image', 'image']}, {'name': 'PairedRandomVerticalFlip', 'keys': ['image', 'image']}, {'name': 'PairedRandomTransposeHW', 'keys': ['image', 'image']}, {'name': 'Transpose', 'keys': ['image', 'image']}, {'name': 'Normalize', 'mean': [0.0, 0.0, 0.0], 'std': [1.0, 1.0, 1.0], 'keys': ['image', 'image']}]}]}, 'test': {'name': 'SRDataset', 'gt_folder': 'data/RSdata_for_SR/test_HR', 'lq_folder': 'data/RSdata_for_SR/test_LR/x4', 'scale': 4, 'preprocess': [{'name': 'LoadImageFromFile', 'key': 'lq'}, {'name': 'LoadImageFromFile', 'key': 'gt'}, {'name': 'Transforms', 'input_keys': ['lq', 'gt'], 'pipeline': [{'name': 'Transpose', 'keys': ['image', 'image']}, {'name': 'Normalize', 'mean': [0.0, 0.0, 0.0], 'std': [1.0, 1.0, 1.0], 'keys': ['image', 'image']}]}]}}, 'lr_scheduler': {'name': 'CosineAnnealingRestartLR', 'learning_rate': 0.0001, 'periods': [100000, 100000, 100000, 100000], 'restart_weights': [1, 1, 1, 1], 'eta_min': 1e-07}, 'optimizer': {'name': 'Adam', 'net_names': ['generator'], 'beta1': 0.9, 'beta2': 0.99}, 'validate': {'interval': 5000, 'save_img': True, 'metrics': {'psnr': {'name': 'PSNR', 'crop_border': 4, 'test_y_channel': True}, 'ssim': {'name': 'SSIM', 'crop_border': 4, 'test_y_channel': True}}}, 'log_config': {'interval': 100, 'visiual_interval': 500}, 'snapshot_config': {'interval': 5000}, 'export_model': [{'name': 'generator', 'inputs_num': 1}], 'is_train': False, 'profiler_options': None, 'timestamp': '-2022-02-22-16-23'}W0222 16:23:07.502808  7250 device_context.cc:404] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1W0222 16:23:07.507916  7250 device_context.cc:422] device: 0, cuDNN Version: 7.6./opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/tensor/creation.py:125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations  if data.dtype == np.object:[02/22 16:23:14] ppgan.engine.trainer INFO: Loaded pretrained weight for net generator[02/22 16:23:14] ppgan.engine.trainer INFO: Test iter: [0/420][02/22 16:23:53] ppgan.engine.trainer INFO: Test iter: [100/420][02/22 16:24:33] ppgan.engine.trainer INFO: Test iter: [200/420][02/22 16:25:12] ppgan.engine.trainer INFO: Test iter: [300/420][02/22 16:25:52] ppgan.engine.trainer INFO: Test iter: [400/420][02/22 16:25:59] ppgan.engine.trainer INFO: Metric psnr: inf[02/22 16:25:59] ppgan.engine.trainer INFO: Metric ssim: 0.9709

       

四、快速体验

定义了使用RCAN模型的预测类,可以直接上传要预测的图像到指定的文件夹,然后运行代码,输出预测结果接下来的示例,是对work/example/inputs文件夹下的图像进行重建In [ ]

# 定义使用RCAN模型预测的类RCANPredictor,需要输入参数:# output: 模型输出保存的文件夹# weight_path: 模型权重文件所在的路径import osimport cv2import globimport numpy as npfrom PIL import Imagefrom tqdm import tqdmimport paddle from ppgan.models.generators import RCANfrom ppgan.apps.base_predictor import BasePredictorfrom ppgan.utils.logger import get_loggerclass RCANPredictor(BasePredictor):    def __init__(self, output='../work/example/output', weight_path=None):        self.input = input        self.output = os.path.join(output, 'RCAN')        self.model = RCAN()        state_dict = paddle.load(weight_path)        state_dict = state_dict['generator']         self.model.load_dict(state_dict)        self.model.eval()    def norm(self, img):        img = np.array(img).transpose([2, 0, 1]).astype('float32') / 1.0        return img.astype('float32')    def denorm(self, img):        img = img.transpose((1, 2, 0))        return (img * 1).clip(0, 255).astype('uint8')    def run_image(self, img):        if isinstance(img, str):            ori_img = Image.open(img).convert('RGB')        elif isinstance(img, np.ndarray):            ori_img = Image.fromarray(img).convert('RGB')        elif isinstance(img, Image.Image):            ori_img = img        img = self.norm(ori_img)        x = paddle.to_tensor(img[np.newaxis, ...])        with paddle.no_grad():            out = self.model(x)        pred_img = self.denorm(out.numpy()[0])        pred_img = Image.fromarray(pred_img)        return pred_img    def run(self, input):        if not os.path.exists(self.output):            os.makedirs(self.output)        pred_img = self.run_image(input)        out_path = None        if self.output:            try:                base_name = os.path.splitext(os.path.basename(input))[0]            except:                base_name = 'result'            out_path = os.path.join(self.output, base_name + '.png')            pred_img.save(out_path)            logger = get_logger()            logger.info('Image saved to {}'.format(out_path))        return pred_img, out_path

   定义好预测的类之后,接下来实例化预测类并对文件夹下的图像进行预测在预测的过程中,展示输入的低分辨率图像与预测的图像预测的结果保存在指定的文件夹的RCAN文件夹中In [7]

import matplotlib.pyplot as plt%matplotlib inline%cd ~ # 输出预测结果的文件夹output = r'work/example/output' # 模型路径weight_path = r"work/weight/rcan_rssr_x4.pdparams"# 待输入的低分辨率影像位置input_dir = r"work/example/inputs" paddle.device.set_device("gpu:0") # 若是cpu环境,则替换为 paddle.device.set_device("cpu")predictor = RCANPredictor(output, weight_path) # 实例化filenames = [f for f in os.listdir(input_dir) if f.endswith('.png')]for filename in filenames:    imgPath = os.path.join(input_dir, filename)       outImg, _ = predictor.run(imgPath) # 预测    # 可视化    image = Image.open(imgPath)    plt.figure(figsize=(10, 6))    plt.subplot(1,2,1), plt.title('Input')    plt.imshow(image), plt.axis('off')    plt.subplot(1,2,2), plt.title('Output')    plt.imshow(outImg), plt.axis('off')     plt.show()

       

/home/aistudio[02/22 19:38:30] ppgan INFO: Image saved to work/example/output/RCAN/mediumresidential44.png

       

               

[02/22 19:38:34] ppgan INFO: Image saved to work/example/output/RCAN/harbor13.png

       

               

[02/22 19:38:38] ppgan INFO: Image saved to work/example/output/RCAN/runway16.png

       

               

[02/22 19:38:43] ppgan INFO: Image saved to work/example/output/RCAN/storagetanks37.png

       

               

[02/22 19:38:47] ppgan INFO: Image saved to work/example/output/RCAN/intersection16.png

       

               

[02/22 19:38:52] ppgan INFO: Image saved to work/example/output/RCAN/river23.png

       

               

[02/22 19:38:57] ppgan INFO: Image saved to work/example/output/RCAN/parkinglot61.png

       

               

[02/22 19:39:02] ppgan INFO: Image saved to work/example/output/RCAN/sparseresidential23.png

       

               

[02/22 19:39:07] ppgan INFO: Image saved to work/example/output/RCAN/overpass63.png

       

               

[02/22 19:39:12] ppgan INFO: Image saved to work/example/output/RCAN/tenniscourt19.png

       

               【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验! - 创想鸟【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验! - 创想鸟【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验! - 创想鸟【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验! - 创想鸟【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验! - 创想鸟【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验! - 创想鸟【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验! - 创想鸟【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验! - 创想鸟【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验! - 创想鸟【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验! - 创想鸟

以上就是【AI达人创造营第二期】以RCAN模型对遥感图像超分辨率重建,可以直接体验!的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/60235.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月10日 18:34:06
下一篇 2025年11月10日 18:36:36

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 旋转长方形后,如何计算其相对于画布左上角的轴距?

    绘制长方形并旋转,计算旋转后轴距 在拥有 1920×1080 画布中,放置一个宽高为 200×20 的长方形,其坐标位于 (100, 100)。当以任意角度旋转长方形时,如何计算它相对于画布左上角的 x、y 轴距? 以下代码提供了一个计算旋转后长方形轴距的解决方案: const x = 200;co…

    2025年12月24日
    000
  • 旋转长方形后,如何计算它与画布左上角的xy轴距?

    旋转后长方形在画布上的xy轴距计算 在画布中添加一个长方形,并将其旋转任意角度,如何计算旋转后的长方形与画布左上角之间的xy轴距? 问题分解: 要计算旋转后长方形的xy轴距,需要考虑旋转对长方形宽高和位置的影响。首先,旋转会改变长方形的长和宽,其次,旋转会改变长方形的中心点位置。 求解方法: 计算旋…

    2025年12月24日
    000
  • 旋转长方形后如何计算其在画布上的轴距?

    旋转长方形后计算轴距 假设长方形的宽、高分别为 200 和 20,初始坐标为 (100, 100),我们将它旋转一个任意角度。根据旋转矩阵公式,旋转后的新坐标 (x’, y’) 可以通过以下公式计算: x’ = x * cos(θ) – y * sin(θ)y’ = x * …

    2025年12月24日
    000
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 如何计算旋转后长方形在画布上的轴距?

    旋转后长方形与画布轴距计算 在给定的画布中,有一个长方形,在随机旋转一定角度后,如何计算其在画布上的轴距,即距离左上角的距离? 以下提供一种计算长方形相对于画布左上角的新轴距的方法: const x = 200; // 初始 x 坐标const y = 90; // 初始 y 坐标const w =…

    2025年12月24日
    200
  • CSS元素设置em和transition后,为何载入页面无放大效果?

    css元素设置em和transition后,为何载入无放大效果 很多开发者在设置了em和transition后,却发现元素载入页面时无放大效果。本文将解答这一问题。 原问题:在视频演示中,将元素设置如下,载入页面会有放大效果。然而,在个人尝试中,并未出现该效果。这是由于macos和windows系统…

    2025年12月24日
    200
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 如何计算旋转后的长方形在画布上的 XY 轴距?

    旋转长方形后计算其画布xy轴距 在创建的画布上添加了一个长方形,并提供其宽、高和初始坐标。为了视觉化旋转效果,还提供了一些旋转特定角度后的图片。 问题是如何计算任意角度旋转后,这个长方形的xy轴距。这涉及到使用三角学来计算旋转后的坐标。 以下是一个 javascript 代码示例,用于计算旋转后长方…

    2025年12月24日
    000
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信