开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

0. 这篇文章干了啥?

提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。

下面一起来阅读一下这项工作~

1. 论文信息

标题:DepthFM: Fast Monocular Depth Estimation with Flow Matching

作者:Ming Gui, Johannes S. Fischer, Ulrich Prestel, Pingchuan Ma, Dmytro Kotovenko, Olga Grebenkova, Stefan Andreas Baumann, Vincent Tao Hu, Björn Ommer

机构:MCML

原文链接:https://arxiv.org/abs/2403.13788

代码链接:https://github.com/CompVis/depth-fm

官方主页:https://depthfm.github.io/

2. 摘要

针对许多下游观光任务和应用至关重要。目前针对此问题的判别式方法受到模糊伪影的限制,而最先进的生成方法由于其SDE性质导致训练样本速度缓慢。我们不是从噪声开始,而是寻求从输入图像到深度图像的直接映射。我们观察到这可通过流匹配来有效地构建,因为其在解空间中的直线轨迹提供了效率和高质量。我们的研究表明,预先训练的图像扩散模型可用于作为流匹配深度模型的充分先验知识。在复杂自然场景的基准测试中,尽管仅在少量合成数据上进行训练,我们的轻量级方法以有利的低计算成本表现出最先进的性能。

3. 效果展示

DepthFM是一种具有强零样本泛化能力的快速推理流匹配模型,可利用强大的先验知识,并且很容易地泛化到未知的真实图像中。在合成数据上进行训练后,模型可以很好地泛化到未知的真实图像中,并对深度图像进行精确匹配。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

与其他最先进的模型相比,DepthFM仅用一个函数评估就获得了明显更清晰的图像。Marigold的深度估计耗时是DepthFM的两倍,但无法生成相同粒度的深度图。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

4. 主要贡献

(1)提出了DepthFM,一种最先进的、多功能的、快速的单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修补和深度条件图像合成等下游任务中的最新能力。

(2)展示了将强大的图像先验从扩散模型成功转移到流匹配模型,几乎不依赖于训练数据,也不需要真实世界的图像。

(3)表明,流匹配模型高效,并能在单个推理步骤内合成深度图。

(4)尽管仅在合成数据上进行训练,但DepthFM在基准数据集和自然图像上表现出色。

AliGenie 天猫精灵开放平台 AliGenie 天猫精灵开放平台

天猫精灵开放平台

AliGenie 天猫精灵开放平台 42 查看详情 AliGenie 天猫精灵开放平台

(5)将表面法线损失作为辅助目标,以获得更准确的深度估计。

(6)除了深度估计,还可可靠地预测其预测的置信度。

5. 具体原理是啥?

训练Pipeline。 训练受到流匹配和表面法向损失的限制:对于流匹配,使用数据依赖的流匹配来回归地面真实深度与对应图像之间的向量场。此外,通过一个表面法向损失来实现几何真实感。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

数据相关的流匹配: DepthFM通过利用图像到深度对,回归出图像分布和深度分布之间的直线向量场。这种方法在不牺牲性能的情况下促进了高效的几步推理。

从扩散先验微调: 作者展示了成功将强大的图像先验从基础图像合成扩散模型(Stable Diffusion v2-1)转移到流匹配模型,几乎不依赖训练数据,并且不需要真实世界的图像。

辅助表面法线损失: 考虑到DepthFM只在合成数据上进行训练,大多数合成数据集提供了地面真实表面法线,将表面法线损失作为辅助目标,以增强DepthFM深度估计的准确性。

6. 实验结果

DepthFM通过仅在63k纯合成样本上进行训练展现出了显著的泛化能力,并且能够在室内外数据集上进行零-shot深度估计。表1定性地展示了DepthFM与最先进的对应模型的性能对比。虽然其他模型通常依赖于大量数据集进行训练,但DepthFM利用了基于扩散的基础模型中固有的丰富知识。这种方法不仅节省了计算资源,而且强调了模型的适应性和训练效率。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

对基于扩散的Marigold深度估计、流匹配(FM)基准和DepthFM模型进行比较。每种方法仅使用一个集合成员进行评估,并针对两个常见基准数据集进行不同数量的函数评估(NFE)。与FM基准相比,DepthFM集成了训练过程中的法线损失和数据相关的耦合。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

对于Marigold和的DepthFM模型在不同数量的功能评估中的定性结果。值得注意的是,通过一步推断,Marigold并没有给出任何有意义的结果,而DepthFM的结果已经显示了真实的深度图。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

在Hypersim上进行深度补全。左:给予部分深度。中:深度估计从给定的部分深度。右:真值深度。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

7. 总结

DepthFM,一种用于单目深度估计的流匹配方法。通过学习输入图像和深度之间的直接映射,而不是将正态分布去噪为深度图,该方法明显比当前基于扩散的解决方案更高效,同时仍提供细粒度的深度图,而不会出现判别式范式的常见伪影。DepthFM使用预先训练好的图像扩散模型作为先验,有效地转移到了深度流匹配模型中。因此,DepthFM只在合成数据上进行了训练,但在推断期间仍然能很好地推广到自然图像。此外,辅助表面法线损失已被证明能改善深度估计。DepthFM的轻量级方法具有竞争力,速度快,并提供可靠的置信度估计。

对更多实验结果和文章细节感兴趣的读者,可以阅读一下论文原文

以上就是开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/617980.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月11日 04:56:40
下一篇 2025年11月11日 04:57:18

相关推荐

  • 从助手函数内部识别调用它的控制器和方法

    本文探讨了如何在PHP助手函数内部,无需额外参数传递,动态获取调用该函数的控制器名称和方法名称。通过利用debug_backtrace机制并结合spatie/backtrace库,我们提供了两种解决方案:一种是在助手函数中直接集成回溯分析,另一种是更高级的全局异常处理方案,将控制器和方法信息自动注入…

    2025年12月10日
    000
  • 理解PHP Web应用中的静态变量、请求生命周期与数据持久化策略

    在PHP Web环境中,每次HTTP请求都会创建一个全新的、独立的执行环境,因此静态变量的值不会在不同请求之间保持。本文深入探讨了PHP中静态变量和方法的行为,解释了Web应用中数据持久化的必要性,并提供了通过数据库和会话管理实现数据持久化的策略,同时对比了Node.js等其他环境的差异。 1. P…

    2025年12月10日
    000
  • PHP常用框架怎样优化数据库查询性能 PHP常用框架查询优化的技巧

    n+1查询问题由orm的懒加载机制导致,当查询主表数据后,在循环中逐条访问关联数据时会触发大量额外查询,例如获取100个用户及其文章时产生101次查询;有效规避方法是使用预加载(eager loading),如laravel的with()或yii的joinwith(),在初始查询时通过join或in…

    2025年12月10日
    000
  • 安装和使用PHPCMS插件扩展网站功能的步骤

    phpcms扩展功能的核心方式是安装插件,具体步骤为:1.选择合适插件时需关注兼容性、来源信誉、功能匹配度、更新频率与安全性;2.下载后通过后台上传或手动ftp上传至指定目录完成安装;3.在后台启用插件并进行必要配置;4.最后进行全面测试确保无冲突。若插件不生效,常见解决思路包括清除缓存、检查文件权…

    2025年12月10日 好文分享
    000
  • SQLServer数据源驱动怎么选_SQLServer数据源驱动程序选择

    答案:选择SQL Server数据源驱动应根据应用语言和需求确定。Java应用首选Microsoft JDBC Driver,.NET应用推荐Microsoft.Data.SqlClient,二者在性能、功能支持和新特性集成上优于通用ODBC驱动;虽ODBC适用于跨平台或遗留系统,但原生驱动因更优的…

    2025年12月3日 数据库
    000
  • 持续80天超100万人在线!魔兽回归后在线数据创10年最佳

    自《魔兽世界》回归以来,这款风靡全球的经典多人在线角色扮演游戏再次在国内掀起了热潮。 在20周年玩家交流会上,官方宣布《魔兽世界》国服最高同时在线的玩家数同时在线人数持续80天超过了100万人。 如果以 Steam的公开数据为标准,仅《魔兽世界》国服的在线人数,就能登上全球第一。20岁的《魔兽世界》…

    2025年12月2日 行业动态
    000
  • 讲述mysql数据表几种有效优化方法

    下面我们要四种关于mysql数据表几种有效优化方法哦,从而提高mysql数据库在应用方面的数据吞吐能力。

    数据库 2025年12月2日
    000
  • mysql查询多少秒内的数据显示

    mysql查询多少秒内的数据显示

    数据库 2025年12月2日
    000
  • excel数据导入mysql数据库二种方法

    下面我们要讲二种excel数据导入mysql数据库方法了,这二种方法比较简单,也是很方便的,以前我把excel数据导入到mysql数据库都是用php程序来实例,现在我们不需要程序,用现有的工具就行了。

    数据库 2025年12月2日
    000
  • 精妙的SQL和SQL SERVER 与ACCESS、EXCEL的数据导入导出转换

    sqlserver 与access,excel互相导入导出代码 * 说明:复制表(只复制结构,源表名:a 新表名:b) select * into b from a where 11 * 说明:拷贝表(拷贝数据,源表名:a 目标表名:b) insert into b(a, b, c) select …

    数据库 2025年12月2日
    000
  • Oracle中的INTERVAL数据类型详解

    NTERVAL YEAR TO MONTH数据类型 Oracle语法: INTERVAL integer [- integer] {YEAR | MONTH} [(precision)][TO {YEAR | MONTH}] 该数据类型常用来表示一段时间差, 注意时间差只精确到年和月. precis…

    数据库 2025年12月2日
    000
  • Oracle数据分摊问题解析

    经常会碰到,由于业务需要,需要将某种汇总的数据按照一定的原则分摊给一堆数据。 其实,如果逻辑清晰的话,这类型的程序还是比较好些的。 本文重点是如果用简单的程序实现这种效果,而且不容易分摊分错。 所有的分摊问题,首先必须要搞清楚以下几点问题: 1 经常会碰到,由于业务需要,需要将某种汇总的数据按照一定…

    数据库 2025年12月2日
    000
  • MySQL怎么去除重复数据?

    这篇文章主要介绍了%ign%ignore_a_1%re_a_1% 去除重复数据实例详解的相关资料,需要的朋友可以参考下 MySQL 去除重复数据实例详解 有两个意义上的重复记录,一是完全重复的记录,也即所有字段均都重复,二是部分字段重复的记录。对于第一种重复,比较容易解决,只需在查询语句中使用dis…

    2025年12月2日
    000
  • Mysql删除重复的数据的方法

    这篇文章主要介绍了mysql删除重复的数据 mysql数据去重复,需要的朋友可以参考下 MySQL数据库中查询重复数据 select * from employee group by emp_name having count (*)>1; Mysql  查询可以删除的重复数据 启科网络PHP…

    2025年12月2日
    000
  • Go语言中正确地向切片追加元素:理解变量作用域与短声明

    本文深入探讨了Go语言中向切片追加元素时常见的陷阱——变量作用域与短声明(:=)的误用。通过分析一个具体的SQL查询结果切片构建案例,我们解释了为何在循环内部使用 := 会导致变量遮蔽和数据丢失,并提供了使用赋值操作符 = 进行正确追加的解决方案,帮助开发者避免此类编译错误和逻辑问题。 在go语言开…

    2025年12月2日 后端开发
    000
  • mysql能存储多少条数据

    %ignore_a_1%是中小型网站普遍使用的数据库之一,可是有很多人都并不清楚mysql到底能支持多大的数据量。下面我将带大家了解一下。 其实MySQL单表的上限,主要与操作系统支持的最大文件大小有关。 官方的介绍: MySQL 3.22 限制的表大小为4GB。由于在MySQL 3.23 中使用了…

    2025年12月2日 数据库
    000
  • 在表中设置外键实现的是哪一类数据完整性

    在表中设置外键实现的是参照完整性。 参照的完整性要求关系中不允许引用不存在的实体。与实体完整性是关系模型必须满足的完整性约束条件,目的是保证数据的一致性。参照完整性又称引用完整性。(推荐学习:MySQL视频教程) 参照完整性是关系模型的完整约束之一,属于数据完整性的一种,其余还有:实体完整性、用户自…

    2025年12月2日 数据库
    000
  • StableDiffusion怎样用LoRA定制画风_StableDiffusion用LoRA定制画风【画风定制】

    通过加载LoRA模型可精准控制Stable Diffusion的生成画风,需将.safetensors文件放入models/loras/目录并重启WebUI;2. 在提示词中使用调用,结合正向提示词描述风格、反向提示词排除干扰,并调整权重值(0.5~1.0)优化效果;3. 可引入Textual In…

    2025年12月2日 科技
    000
  • MVDiffusion:实现高质量多视角图像生成与精确复刻场景材质

    逼真的图像生成在虚拟现实、增强现实、视频游戏和电影制作等领域有广泛应用。 随着近两年来扩散模型的快速发展,图像生成领域取得了重大突破。从Stable Diffusion衍生出的一系列根据文本描述生成图像的开源或商业模型,已经对设计、游戏等领域产生了巨大的影响 然而,如何根据给定的文本或其他条件,产生…

    2025年12月2日 科技
    000
  • ICCV 2023揭晓:ControlNet、SAM等热门论文斩获奖项

    在法国巴黎举行了国际计算机视觉大会ICCV(International Conference on Computer Vision)本周开幕 作为全球计算机视觉领域顶级的学术会议,ICCV 每两年召开一次。 ICCV的热度一直以来都与CVPR不相上下,屡创新高 在今天的开幕式上,ICCV官方公布了今…

    2025年12月2日 科技
    000

发表回复

登录后才能评论
关注微信