车牌识别LPRNet

该项目为v1.0版本的车牌识别项目,对数据集做了更新,先对车牌矫正再识别,降低任务难度,40个epoch训练达验证集98.4%精度。实现模型与batch解耦,保证推理精度不受batch影响,可与车牌检测项目搭配。包含完整训练推理过程、模型转onnx及检查推理、数据集构建等内容。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

车牌识别lprnet - 创想鸟

车牌识别

LPRNet端到端训练车牌识别

本项目包括

完整训练推理过程模型转onnx以及onnx的检查和推理

数据集构建

In [1]

# 数据解压!unzip -o -q -d /home/aistudio/data /home/aistudio/data/data17968/CCPD2019.zip

In [4]

"""CCPD数据集的图片名称即是label:0152-4_14-224&551_398&624-388&610_224&624_234&565_398&551-0_0_30_27_31_9_31-97-108.jpg        ^      ^       ^       ^       ^       ^       ^            ^         ^   ^        |  框左上角  框右下角  右下角点 左下角点 左上角点  右上角点      车牌号码    亮度  模糊度水平/垂直倾角亮度数值越大,车牌越亮;模糊度数值越小,车牌越模糊。"""import cv2import osimport numpy as npfrom tqdm.notebook import tqdm # 参考 https://blog.csdn.net/qq_36516958/article/details/114274778from PIL import Image# 根据4顶点对图片矫正def four_point_transform(image, pts):    rect = pts.astype('float32')    br_x, br_y, bl_x, bl_y, tl_x, tl_y, tr_x, tr_y = rect    widthA = np.sqrt(((br_x - bl_x) ** 2) + ((br_y - bl_y) ** 2))    widthB = np.sqrt(((tr_x - tl_x) ** 2) + ((tr_y - tl_y) ** 2))    maxWidth = max(int(widthA), int(widthB))    heightA = np.sqrt(((tr_x - br_x) ** 2) + ((tr_y - br_y) ** 2))    heightB = np.sqrt(((tl_x - bl_x) ** 2) + ((tl_y - bl_y) ** 2))    maxHeight = max(int(heightA), int(heightB))    rect =  np.array([[tl_x, tl_y], [tr_x, tr_y], [br_x, br_y], [bl_x, bl_y]], dtype='float32')    dst = np.array([        [0, 0],        [maxWidth - 1, 0],        [maxWidth - 1, maxHeight - 1],        [0, maxHeight - 1]], dtype = "float32")    M = cv2.getPerspectiveTransform(rect, dst)    warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))    return warped# CCPD车牌有重复,应该是不同角度或者模糊程度path = r'data/ccpd_base'  # 改成自己的车牌路径provinces = ["皖", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "京", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "警", "学", "O"]alphabets = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',             'X', 'Y', 'Z', 'O']ads = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',       'Y', 'Z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'O']save_path = 'rec_images/data/'if not os.path.exists(save_path):    os.makedirs(save_path)num = 0for filename in tqdm(os.listdir(path)):    num += 1    result = ""    _, _, box, points, plate, brightness, blurriness = filename.split('-')    list_plate = plate.split('_')  # 读取车牌    result += provinces[int(list_plate[0])]    result += alphabets[int(list_plate[1])]    result += ads[int(list_plate[2])] + ads[int(list_plate[3])] + ads[int(list_plate[4])] + ads[int(list_plate[5])] + ads[int(list_plate[6])]    # 新能源车牌的要求,如果不是新能源车牌可以删掉这个if    # if result[2] != 'D' and result[2] != 'F'     #         and result[-1] != 'D' and result[-1] != 'F':    #     print(filename)    #     print("Error label, Please check!")    #     assert 0, "Error label ^~^!!!"    # print(result)        img_path = os.path.join(path, filename)    img = cv2.imread(img_path)    assert os.path.exists(img_path), "image file {} dose not exist.".format(img_path)    br, bl, tl, tr = points.split('_')    br_x, br_y = [float(i) for i in br.split('&')]    bl_x, bl_y = [float(i) for i in bl.split('&')]    tl_x, tl_y = [float(i) for i in tl.split('&')]    tr_x, tr_y = [float(i) for i in tr.split('&')]    landmarks = np.array([br_x, br_y, bl_x, bl_y, tl_x, tl_y, tr_x, tr_y], dtype='float32')    img = four_point_transform(img, landmarks)    img = cv2.resize(img, (94, 24))    cv2.imencode('.jpg', img)[1].tofile(os.path.join(save_path, r"{}.jpg".format(result)))
  0%|          | 0/95774 [00:00<?, ?it/s]

数据集划分

In [5]

import osimport randomimage_dir = "rec_images/data" train_file = 'rec_images/train.txt'eval_file = 'rec_images/valid.txt'dataset_list = os.listdir(image_dir)train_num = 0valid_num = 0for img_name in dataset_list:    if '.jpg' not in img_name:        print(img_name)        continue    probo = random.randint(1, 100)    if(probo <= 80): # train        with open(train_file, 'a') as f_train:            f_train.write(img_name+'n')        train_num+=1    else: #valid        with open(eval_file, 'a') as f_eval:            f_eval.write(img_name+'n')        valid_num+=1print(f'train: {train_num}, val:{valid_num}')
.ipynb_checkpointstrain: 62959, val:15937

Dataloader

数据读取

In [1]

import osfrom paddle.io import Datasetfrom PIL import Imageimport numpy as npCHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',         '新',         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',         'W', 'X', 'Y', 'Z', 'I', 'O', '-'         ]CHARS_DICT = {char:i for i, char in enumerate(CHARS)}class LprnetDataloader(Dataset):    def __init__(self, target_path, label_text, transforms=None):        super().__init__()        self.transforms = transforms        self.target_path = target_path        with open(label_text) as f:            self.data = f.readlines()    def __getitem__(self, index):        img_name = self.data[index].strip()        img_path = os.path.join(self.target_path, img_name)        data = Image.open(img_path)                label = []        img_label = img_name.split('.', 1)[0]        for c in img_label:            label.append(CHARS_DICT[c])        if len(label) == 8:            if self.check(label) == False:                print(imgname)                assert 0, "Error label ^~^!!!"        if self.transforms is not None:            data = self.transforms(data)        data = np.array(data, dtype=np.float32)        np_label = np.array(label, dtype=np.int64)        return data, np_label, len(np_label)    def __len__(self):        return len(self.data)        def check(self, label):        if label[2] != CHARS_DICT['D'] and label[2] != CHARS_DICT['F']                 and label[-1] != CHARS_DICT['D'] and label[-1] != CHARS_DICT['F']:            print("Error label, Please check!")            return False        else:            return True

组batch

将不同长度的label,padding为以最大标签长度的同一尺寸,shape为(batch_size,max_label_length)

In [2]

def collate_fn(batch):    # 图片输入已经规范到相同大小,这里只需要对标签进行padding    batch_size = len(batch)    # 找出标签最长的    batch_temp = sorted(batch, key=lambda sample: len(sample[1]), reverse=True)    max_label_length = len(batch_temp[0][1])    # 以最大的长度创建0张量    labels = np.zeros((batch_size, max_label_length), dtype='int64')    label_lens = []    img_list = []    for x in range(batch_size):        sample = batch[x]        tensor = sample[0]        target = sample[1]        label_length = sample[2]        img_list.append(tensor)        # 将数据插入都0张量中,实现了padding        labels[x, :label_length] = target[:]        label_lens.append(len(target))    label_lens = paddle.to_tensor(label_lens, dtype='int64')  # ctcloss需要    imgs = paddle.to_tensor(img_list, dtype='float32')    labels = paddle.to_tensor(labels, dtype="int32")  # ctcloss仅支持int32的labels    return imgs, labels, label_lens

数据前处理

这里数据集量挺多,各种情况的数据都有(天气,角度,模糊),就不再做数据增强的操作了。

就简单做个归一化操作就好了,训练的时候对数据进行ToTensor + Normalize

import paddle.vision.transforms as Ttrain_transforms = T.Compose([                 T.ToTensor(data_format='CHW'),  # 这里的CHW是指数据的输出格式            T.Normalize(                [0.5, 0.5, 0.5],  # 在totensor的时候已经将图片缩放到0-1                [0.5, 0.5, 0.5],                data_format='CHW'  # 这里是数据输入格式            ),         ])

LPRNet网络

网络结构

In [3]

import paddle.nn as nnimport paddleCHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',         '新',         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',         'W', 'X', 'Y', 'Z', 'I', 'O', '-'         ]class small_basic_block(nn.Layer):    def __init__(self, ch_in, ch_out):        super(small_basic_block, self).__init__()        self.block = nn.Sequential(            nn.Conv2D(ch_in, ch_out // 4, kernel_size=1),            nn.ReLU(),            nn.Conv2D(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),            nn.ReLU(),            nn.Conv2D(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),            nn.ReLU(),            nn.Conv2D(ch_out // 4, ch_out, kernel_size=1),        )    def forward(self, x):        return self.block(x)class maxpool_3d(nn.Layer):    def __init__(self, kernel_size, stride):        super(maxpool_3d, self).__init__()        assert(len(kernel_size)==3 and len(stride)==3)        kernel_size2d1 = kernel_size[-2:]        stride2d1 = stride[-2:]        kernel_size2d2 = (1, kernel_size[0])        stride2d2 = (1, stride[0])        self.maxpool1 = nn.MaxPool2D(kernel_size=kernel_size2d1, stride=stride2d1)        self.maxpool2 = nn.MaxPool2D(kernel_size=kernel_size2d2, stride=stride2d2)    def forward(self,x):        x = self.maxpool1(x)        x = x.transpose((0, 3, 2, 1))        x = self.maxpool2(x)        x = x.transpose((0, 3, 2, 1))        return xclass LPRNet(nn.Layer):    def __init__(self, lpr_max_len, class_num, dropout_rate):        super(LPRNet, self).__init__()        self.lpr_max_len = lpr_max_len        self.class_num = class_num        self.backbone = nn.Sequential(            nn.Conv2D(in_channels=3, out_channels=64, kernel_size=3, stride=1),    # 0  [bs,3,24,94] -> [bs,64,22,92]            nn.BatchNorm2D(num_features=64),                                       # 1  -> [bs,64,22,92]            nn.ReLU(),                                                             # 2  -> [bs,64,22,92]            maxpool_3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),                 # 3  -> [bs,64,20,90]            small_basic_block(ch_in=64, ch_out=128),                               # 4  -> [bs,128,20,90]            nn.BatchNorm2D(num_features=128),                                      # 5  -> [bs,128,20,90]            nn.ReLU(),                                                             # 6  -> [bs,128,20,90]            maxpool_3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),                 # 7  -> [bs,64,18,44]            small_basic_block(ch_in=64, ch_out=256),                               # 8  -> [bs,256,18,44]            nn.BatchNorm2D(num_features=256),                                      # 9  -> [bs,256,18,44]            nn.ReLU(),                                                             # 10 -> [bs,256,18,44]            small_basic_block(ch_in=256, ch_out=256),                              # 11 -> [bs,256,18,44]            nn.BatchNorm2D(num_features=256),                                      # 12 -> [bs,256,18,44]            nn.ReLU(),                                                             # 13 -> [bs,256,18,44]            maxpool_3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)),                 # 14 -> [bs,64,16,21]            nn.Dropout(dropout_rate),                                              # 15 -> [bs,64,16,21]            nn.Conv2D(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1),   # 16 -> [bs,256,16,18]            nn.BatchNorm2D(num_features=256),                                            # 17 -> [bs,256,16,18]            nn.ReLU(),                                                                   # 18 -> [bs,256,16,18]            nn.Dropout(dropout_rate),                                                    # 19 -> [bs,256,16,18]            nn.Conv2D(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1),  # class_num=68  20  -> [bs,68,4,18]            nn.BatchNorm2D(num_features=class_num),                                             # 21 -> [bs,68,4,18]            nn.ReLU(),                                                                          # 22 -> [bs,68,4,18]        )        self.container = nn.Sequential(            nn.Conv2D(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1, 1), stride=(1, 1)),        )    def forward(self, x):        keep_features = list()        for i, layer in enumerate(self.backbone.children()):            x = layer(x)            if i in [2, 6, 13, 22]:                keep_features.append(x)        global_context = list()        # keep_features: [bs,64,22,92]  [bs,128,20,90] [bs,256,18,44] [bs,68,4,18]        for i, f in enumerate(keep_features):            if i in [0, 1]:                # [bs,64,22,92] -> [bs,64,4,18]                # [bs,128,20,90] -> [bs,128,4,18]                f = nn.AvgPool2D(kernel_size=5, stride=5)(f)            if i in [2]:                # [bs,256,18,44] -> [bs,256,4,18]                f = nn.AvgPool2D(kernel_size=(4, 10), stride=(4, 2))(f)            f_pow = paddle.pow(f, 2)     # [bs,64,4,18]  所有元素求平方            # f_mean = paddle.mean(f_pow)  # 1 所有元素求平均            f_mean = paddle.mean(f_pow, axis=[1,2,3], keepdim=True)             f = paddle.divide(f, f_mean)    # [bs,64,4,18]  所有元素除以这个均值            global_context.append(f)        x = paddle.concat(global_context, 1)  # [bs,516,4,18]        x = self.container(x)  # -> [bs, 68, 4, 18]   head头        logits = paddle.mean(x, axis=2)  # -> [bs, 68, 18]  # 68 字符类别数   18字符序列长度        return logits

权重初始化函数

In [4]

# 使用model.applay的方法,可以修改到每一个子层def init_weight(model):    for name, layer in model.named_sublayers():        if isinstance(layer, nn.Conv2D):            weight_attr = nn.initializer.KaimingNormal()            bias_attr = nn.initializer.Constant(0.)            init_bias = paddle.create_parameter(layer.bias.shape, attr=bias_attr, dtype='float32')            init_weight = paddle.create_parameter(layer.weight.shape, attr=weight_attr, dtype='float32')            layer.weight = init_weight            layer.bias = init_bias        elif isinstance(layer, nn.BatchNorm2D):            weight_attr = nn.initializer.XavierUniform()            bias_attr = nn.initializer.Constant(0.)            init_bias = paddle.create_parameter(layer.bias.shape, attr=bias_attr, dtype='float32')            init_weight = paddle.create_parameter(layer.weight.shape, attr=weight_attr, dtype='float32')            layer.weight = init_weight            layer.bias = init_bias

损失函数

损失函数是CTCLoss,需要传入的参数有:

logits: 概率序列, shape=[max_logit_length, batch_size, num_classes+1]

数据类型仅支持float32

lbels: padding后的标签序列,shape=[batch_size, max_label_length]

数据类型仅支持int32

input_lengths: 输入logits数据中的每个序列的长度,shape=[batch_size]

数据类型仅支持int64

label_lengths: label中每个序列的长度,shape=[batch_size]

数据类型仅支持int64

ctcloss文档:https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/nn/CTCLoss_cn.html

准确率计算函数

In [5]

import numpy as npCHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',         '新',         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',         'W', 'X', 'Y', 'Z', 'I', 'O', '-'         ]class ACC:    def __init__(self):        self.Tp = 0        self.Tn_1 = 0        self.Tn_2 = 0        self.acc = 0    def batch_update(self, batch_label, label_lengths, pred):        for i, label in enumerate(batch_label):            length = label_lengths[i]            label = label[:length]            pred_i = pred[i, :, :]            preb_label = []            for j in range(pred_i.shape[1]):  # T                preb_label.append(np.argmax(pred_i[:, j], axis=0))            no_repeat_blank_label = []            pre_c = preb_label[0]            if pre_c != len(CHARS) - 1:  # 非空白                no_repeat_blank_label.append(pre_c)            for c in preb_label:  # dropout repeate label and blank label                if (pre_c == c) or (c == len(CHARS) - 1):                    if c == len(CHARS) - 1:                        pre_c = c                    continue                no_repeat_blank_label.append(c)                pre_c = c            # print('no_repeat_blank_label:', no_repeat_blank_label)            # print('gt_label:', label)            if len(label) != len(no_repeat_blank_label):                self.Tn_1 += 1            elif (np.asarray(label) == np.asarray(no_repeat_blank_label)).all():                self.Tp += 1            else:                self.Tn_2 += 1        self.acc = self.Tp * 1.0 / (self.Tp + self.Tn_1 + self.Tn_2)    def clear(self):        self.Tp = 0        self.Tn_1 = 0        self.Tn_2 = 0        self.acc = 0print(len(CHARS))
68

加载预训练参数

一次训练没有到位,在之前的权重参数基础上继续训练,需要加载预训练权重。

若有预训练权重可以加载预训练权重

In [6]

# 保存的权重路径:runs/lprnet_best.pdparamsimport osdef load_pretrained(model, path=None):    print('params loading...')    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):        raise ValueError("Model pretrain path {} does not "                         "exists.".format(path))    param_state_dict = paddle.load(path + ".pdparams")    model.set_dict(param_state_dict)    print(f'load {path + ".pdparams"} success...')    return

训练

训练得到的模型为:runs/lprnet_best_2.pdparams

矫正后的图片一定程度降低了任务难度,这里进行了40个epoch的训练,最终验证集精度98.4%

In [7]

import paddle.vision.transforms as Tfrom paddle.io import DataLoaderimport timefrom statistics import mean# 参数定义EPOCH = 40IMGSIZE = (94, 24)IMGDIR = 'rec_images/data'TRAINFILE = 'rec_images/train.txt'VALIDFILE = 'rec_images/valid.txt'SAVEFOLDER = './runs'DROPOUT = 0.LEARNINGRATE = 0.001LPRMAXLEN = 18TRAINBATCHSIZE = 256EVALBATCHSIZE = 256NUMWORKERS = 2  # 若dataloader报错,调小该参数,或直接改为0WEIGHTDECAY = 0.001# 图片预处理train_transforms = T.Compose([              T.ColorJitter(0.2,0.2,0.2),            T.ToTensor(data_format='CHW'),             T.Normalize(                [0.5, 0.5, 0.5],  # 在totensor的时候已经将图片缩放到0-1                [0.5, 0.5, 0.5],                data_format='CHW'             ),         ])eval_transforms = T.Compose([                T.ToTensor(data_format='CHW'),             T.Normalize(                [0.5, 0.5, 0.5],                 [0.5, 0.5, 0.5],                data_format='CHW'             ),         ])# 数据加载train_data_set = LprnetDataloader(IMGDIR, TRAINFILE, train_transforms)eval_data_set = LprnetDataloader(IMGDIR, VALIDFILE, eval_transforms)train_loader = DataLoader(    train_data_set,     batch_size=TRAINBATCHSIZE,     shuffle=True,     num_workers=NUMWORKERS,     drop_last=True,     collate_fn=collate_fn)eval_loader = DataLoader(    eval_data_set,     batch_size=EVALBATCHSIZE,     shuffle=False,     num_workers=NUMWORKERS,     drop_last=False,     collate_fn=collate_fn)# 定义lossloss_func = nn.CTCLoss(len(CHARS)-1)# input_length, loss计算需要input_length = np.ones(shape=TRAINBATCHSIZE) * LPRMAXLENinput_length = paddle.to_tensor(input_length, dtype='int64')# LPRNet网络,初始化/加载预训练参数model = LPRNet(LPRMAXLEN, len(CHARS), DROPOUT)model.apply(init_weight)  # 首次训练时初始化# 定义优化器def make_optimizer(base_lr, parameters=None):    momentum = 0.9    weight_decay = WEIGHTDECAY    scheduler = paddle.optimizer.lr.CosineAnnealingDecay(        learning_rate=base_lr, eta_min=0.01*base_lr, T_max=EPOCH, verbose=1)    scheduler = paddle.optimizer.lr.LinearWarmup(  # 第一次训练的时候考虑模型权重不稳定,添加warmup策略        learning_rate=scheduler,        warmup_steps=5,        start_lr=base_lr/5,        end_lr=base_lr,        verbose=True)    optimizer = paddle.optimizer.Momentum(        learning_rate=scheduler,        weight_decay=paddle.regularizer.L2Decay(weight_decay),        momentum=momentum,        parameters=parameters)    return optimizer, scheduleroptim, scheduler = make_optimizer(LEARNINGRATE, parameters=model.parameters())# accacc_train = ACC()acc_eval = ACC()BESTACC = 0.5# 训练流程for epoch in range(EPOCH):    start_time = time.localtime(time.time())    str_time = time.strftime("%Y-%m-%d %H:%M:%S", start_time)    print(f'{str_time} || Epoch {epoch} start:')    model.train()    for batch_id, bath_data in enumerate(train_loader):        img_data, label_data, label_lens = bath_data                predict = model(img_data)        logits  = paddle.transpose(predict, (2,0,1))  # for ctc loss: T x N x C        loss = loss_func(logits , label_data, input_length, label_lens)        acc_train.batch_update(label_data, label_lens, predict)        if batch_id % 50 == 0:            print(f'epoch:{epoch}, batch_id:{batch_id}, loss:{loss.item():.4f},             acc:{acc_train.acc:.4f} Tp/Tn_1/Tn_2: {acc_train.Tp}/{acc_train.Tn_1}/{acc_train.Tn_2}')                loss.backward()        optim.step()        optim.clear_grad()    acc_train.clear()        # save    if epoch and epoch % 20 == 0:        paddle.save(model.state_dict(), os.path.join(SAVEFOLDER,f'lprnet_{epoch}_2.pdparams'))        paddle.save(optim.state_dict(), os.path.join(SAVEFOLDER,f'lprnet_{epoch}_2.pdopt'))        print(f'Saved log ecpch-{epoch}')    # eval    with paddle.no_grad():        model.eval()        loss_list = []        for batch_id, bath_data in enumerate(eval_loader):            img_data, label_data, label_lens = bath_data            predict = model(img_data)            logits = paddle.transpose(predict, (2,0,1))            loss = loss_func(logits, label_data, input_length, label_lens)            acc_eval.batch_update(label_data, label_lens, predict)            loss_list.append(loss.item())        print(f'Eval of epoch {epoch} => acc:{acc_eval.acc:.4f}, loss:{mean(loss_list):.4f}')        # save best model        if acc_eval.acc > BESTACC:            paddle.save(model.state_dict(), os.path.join(SAVEFOLDER,f'lprnet_best_2.pdparams'))            paddle.save(optim.state_dict(), os.path.join(SAVEFOLDER,f'lprnet_best_2.pdopt'))            BESTACC = acc_eval.acc            print(f'Saved best model of epoch{epoch}, acc {acc_eval.acc:.4f}, save path "{SAVEFOLDER}"')        acc_eval.clear()        # 学习率衰减策略    scheduler.step()
Epoch 0: CosineAnnealingDecay set learning rate to 0.001.Epoch 0: LinearWarmup set learning rate to 0.0002.2023-07-27 13:05:14 || Epoch 0 start:
W0727 13:05:14.896270 20153 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2W0727 13:05:14.900187 20153 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2./opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:712: UserWarning: When training, we now always track global mean and variance.  "When training, we now always track global mean and variance."/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py:277: UserWarning: The dtype of left and right variables are not the same, left dtype is paddle.float32, but right dtype is paddle.int64, the right dtype will convert to paddle.float32  .format(lhs_dtype, rhs_dtype, lhs_dtype))
epoch:0, batch_id:0, loss:71.7745,             acc:0.0000 Tp/Tn_1/Tn_2: 0/242/14epoch:0, batch_id:50, loss:4.1406,             acc:0.0000 Tp/Tn_1/Tn_2: 0/11919/1137epoch:0, batch_id:100, loss:2.7202,             acc:0.0000 Tp/Tn_1/Tn_2: 0/23156/2700epoch:0, batch_id:150, loss:2.3612,             acc:0.0000 Tp/Tn_1/Tn_2: 1/34437/4218epoch:0, batch_id:200, loss:1.9747,             acc:0.0003 Tp/Tn_1/Tn_2: 15/45563/5878Eval of epoch 0 => acc:0.0053, loss:1.7451Epoch 1: LinearWarmup set learning rate to 0.00036.2023-07-27 13:07:32 || Epoch 1 start:epoch:1, batch_id:0, loss:1.8066,             acc:0.0000 Tp/Tn_1/Tn_2: 0/208/48epoch:1, batch_id:50, loss:1.4053,             acc:0.0102 Tp/Tn_1/Tn_2: 133/10502/2421epoch:1, batch_id:100, loss:1.0782,             acc:0.0284 Tp/Tn_1/Tn_2: 735/19852/5269epoch:1, batch_id:150, loss:0.8829,             acc:0.0548 Tp/Tn_1/Tn_2: 2119/28197/8340epoch:1, batch_id:200, loss:0.6519,             acc:0.0886 Tp/Tn_1/Tn_2: 4559/35534/11363Eval of epoch 1 => acc:0.3610, loss:0.5038Epoch 2: LinearWarmup set learning rate to 0.0005200000000000001.2023-07-27 13:11:21 || Epoch 2 start:epoch:2, batch_id:0, loss:0.4789,             acc:0.3516 Tp/Tn_1/Tn_2: 90/116/50epoch:2, batch_id:50, loss:0.3491,             acc:0.4154 Tp/Tn_1/Tn_2: 5423/5085/2548epoch:2, batch_id:100, loss:0.2775,             acc:0.4883 Tp/Tn_1/Tn_2: 12626/8683/4547epoch:2, batch_id:150, loss:0.2271,             acc:0.5498 Tp/Tn_1/Tn_2: 21252/11238/6166epoch:2, batch_id:200, loss:0.1476,             acc:0.5987 Tp/Tn_1/Tn_2: 30809/13097/7550Eval of epoch 2 => acc:0.8157, loss:0.1444Saved best model of epoch2, acc 0.8157, save path "./runs"Epoch 3: LinearWarmup set learning rate to 0.00068.2023-07-27 13:17:25 || Epoch 3 start:epoch:3, batch_id:0, loss:0.1045,             acc:0.8320 Tp/Tn_1/Tn_2: 213/28/15epoch:3, batch_id:50, loss:0.1356,             acc:0.8227 Tp/Tn_1/Tn_2: 10741/1188/1127epoch:3, batch_id:100, loss:0.0764,             acc:0.8366 Tp/Tn_1/Tn_2: 21631/2146/2079epoch:3, batch_id:150, loss:0.1323,             acc:0.8478 Tp/Tn_1/Tn_2: 32772/2902/2982epoch:3, batch_id:200, loss:0.0691,             acc:0.8577 Tp/Tn_1/Tn_2: 44132/3486/3838Eval of epoch 3 => acc:0.9084, loss:0.0740Saved best model of epoch3, acc 0.9084, save path "./runs"Epoch 4: LinearWarmup set learning rate to 0.00084.2023-07-27 13:19:41 || Epoch 4 start:epoch:4, batch_id:0, loss:0.1121,             acc:0.8867 Tp/Tn_1/Tn_2: 227/15/14epoch:4, batch_id:50, loss:0.0609,             acc:0.9091 Tp/Tn_1/Tn_2: 11869/419/768epoch:4, batch_id:100, loss:0.0481,             acc:0.9139 Tp/Tn_1/Tn_2: 23629/768/1459epoch:4, batch_id:150, loss:0.0587,             acc:0.9171 Tp/Tn_1/Tn_2: 35450/1082/2124epoch:4, batch_id:200, loss:0.0702,             acc:0.9203 Tp/Tn_1/Tn_2: 47356/1337/2763Eval of epoch 4 => acc:0.9371, loss:0.0509Saved best model of epoch4, acc 0.9371, save path "./runs"Epoch 0: CosineAnnealingDecay set learning rate to 0.001.Epoch 5: LinearWarmup set learning rate to 0.001.2023-07-27 13:21:59 || Epoch 5 start:epoch:5, batch_id:0, loss:0.0351,             acc:0.9336 Tp/Tn_1/Tn_2: 239/6/11epoch:5, batch_id:50, loss:0.0328,             acc:0.9372 Tp/Tn_1/Tn_2: 12236/249/571epoch:5, batch_id:100, loss:0.0846,             acc:0.9387 Tp/Tn_1/Tn_2: 24270/461/1125epoch:5, batch_id:150, loss:0.0242,             acc:0.9410 Tp/Tn_1/Tn_2: 36375/657/1624epoch:5, batch_id:200, loss:0.0518,             acc:0.9416 Tp/Tn_1/Tn_2: 48453/859/2144Eval of epoch 5 => acc:0.9513, loss:0.0396Saved best model of epoch5, acc 0.9513, save path "./runs"Epoch 1: CosineAnnealingDecay set learning rate to 0.0009984740801978985.Epoch 6: LinearWarmup set learning rate to 0.0009984740801978985.2023-07-27 13:24:17 || Epoch 6 start:epoch:6, batch_id:0, loss:0.0390,             acc:0.9453 Tp/Tn_1/Tn_2: 242/4/10epoch:6, batch_id:50, loss:0.0319,             acc:0.9527 Tp/Tn_1/Tn_2: 12438/155/463epoch:6, batch_id:100, loss:0.0267,             acc:0.9526 Tp/Tn_1/Tn_2: 24630/296/930epoch:6, batch_id:150, loss:0.0330,             acc:0.9526 Tp/Tn_1/Tn_2: 36825/429/1402epoch:6, batch_id:200, loss:0.0202,             acc:0.9534 Tp/Tn_1/Tn_2: 49056/560/1840Eval of epoch 6 => acc:0.9589, loss:0.0337Saved best model of epoch6, acc 0.9589, save path "./runs"Epoch 2: CosineAnnealingDecay set learning rate to 0.0009939057285945933.Epoch 7: LinearWarmup set learning rate to 0.0009939057285945933.2023-07-27 13:26:33 || Epoch 7 start:epoch:7, batch_id:0, loss:0.0181,             acc:0.9766 Tp/Tn_1/Tn_2: 250/0/6epoch:7, batch_id:50, loss:0.0189,             acc:0.9609 Tp/Tn_1/Tn_2: 12546/118/392epoch:7, batch_id:100, loss:0.0424,             acc:0.9590 Tp/Tn_1/Tn_2: 24795/234/827epoch:7, batch_id:150, loss:0.0381,             acc:0.9611 Tp/Tn_1/Tn_2: 37154/322/1180epoch:7, batch_id:200, loss:0.0206,             acc:0.9615 Tp/Tn_1/Tn_2: 49475/431/1550Eval of epoch 7 => acc:0.9644, loss:0.0298Saved best model of epoch7, acc 0.9644, save path "./runs"Epoch 3: CosineAnnealingDecay set learning rate to 0.00098632311059685.Epoch 8: LinearWarmup set learning rate to 0.00098632311059685.2023-07-27 13:28:51 || Epoch 8 start:epoch:8, batch_id:0, loss:0.0230,             acc:0.9570 Tp/Tn_1/Tn_2: 245/0/11epoch:8, batch_id:50, loss:0.0259,             acc:0.9634 Tp/Tn_1/Tn_2: 12578/91/387epoch:8, batch_id:100, loss:0.0092,             acc:0.9656 Tp/Tn_1/Tn_2: 24966/177/713epoch:8, batch_id:150, loss:0.0376,             acc:0.9657 Tp/Tn_1/Tn_2: 37332/264/1060epoch:8, batch_id:200, loss:0.0304,             acc:0.9662 Tp/Tn_1/Tn_2: 49718/344/1394Eval of epoch 8 => acc:0.9681, loss:0.0268Saved best model of epoch8, acc 0.9681, save path "./runs"Epoch 4: CosineAnnealingDecay set learning rate to 0.0009757729755661011.Epoch 9: LinearWarmup set learning rate to 0.0009757729755661011.2023-07-27 13:31:10 || Epoch 9 start:epoch:9, batch_id:0, loss:0.0178,             acc:0.9531 Tp/Tn_1/Tn_2: 244/1/11epoch:9, batch_id:50, loss:0.0270,             acc:0.9685 Tp/Tn_1/Tn_2: 12645/74/337epoch:9, batch_id:100, loss:0.0288,             acc:0.9699 Tp/Tn_1/Tn_2: 25078/155/623epoch:9, batch_id:150, loss:0.0193,             acc:0.9697 Tp/Tn_1/Tn_2: 37483/223/950epoch:9, batch_id:200, loss:0.0158,             acc:0.9703 Tp/Tn_1/Tn_2: 49927/287/1242Eval of epoch 9 => acc:0.9695, loss:0.0239Saved best model of epoch9, acc 0.9695, save path "./runs"Epoch 5: CosineAnnealingDecay set learning rate to 0.000962320368593087.Epoch 10: LinearWarmup set learning rate to 0.000962320368593087.2023-07-27 13:33:30 || Epoch 10 start:epoch:10, batch_id:0, loss:0.0241,             acc:0.9531 Tp/Tn_1/Tn_2: 244/3/9epoch:10, batch_id:50, loss:0.0086,             acc:0.9722 Tp/Tn_1/Tn_2: 12693/66/297epoch:10, batch_id:100, loss:0.0416,             acc:0.9717 Tp/Tn_1/Tn_2: 25125/129/602epoch:10, batch_id:150, loss:0.0239,             acc:0.9724 Tp/Tn_1/Tn_2: 37588/191/877epoch:10, batch_id:200, loss:0.0162,             acc:0.9728 Tp/Tn_1/Tn_2: 50054/263/1139Eval of epoch 10 => acc:0.9715, loss:0.0213Saved best model of epoch10, acc 0.9715, save path "./runs"Epoch 6: CosineAnnealingDecay set learning rate to 0.0009460482294732421.Epoch 11: LinearWarmup set learning rate to 0.0009460482294732421.2023-07-27 13:35:46 || Epoch 11 start:epoch:11, batch_id:0, loss:0.0308,             acc:0.9570 Tp/Tn_1/Tn_2: 245/0/11epoch:11, batch_id:50, loss:0.0199,             acc:0.9739 Tp/Tn_1/Tn_2: 12715/77/264epoch:11, batch_id:100, loss:0.0190,             acc:0.9752 Tp/Tn_1/Tn_2: 25215/125/516epoch:11, batch_id:150, loss:0.0100,             acc:0.9751 Tp/Tn_1/Tn_2: 37692/182/782epoch:11, batch_id:200, loss:0.0172,             acc:0.9749 Tp/Tn_1/Tn_2: 50166/244/1046Eval of epoch 11 => acc:0.9745, loss:0.0195Saved best model of epoch11, acc 0.9745, save path "./runs"Epoch 7: CosineAnnealingDecay set learning rate to 0.0009270568813552756.Epoch 12: LinearWarmup set learning rate to 0.0009270568813552756.2023-07-27 13:38:05 || Epoch 12 start:epoch:12, batch_id:0, loss:0.0274,             acc:0.9609 Tp/Tn_1/Tn_2: 246/3/7epoch:12, batch_id:50, loss:0.0134,             acc:0.9765 Tp/Tn_1/Tn_2: 12749/46/261epoch:12, batch_id:100, loss:0.0206,             acc:0.9773 Tp/Tn_1/Tn_2: 25269/93/494epoch:12, batch_id:150, loss:0.0182,             acc:0.9766 Tp/Tn_1/Tn_2: 37753/151/752epoch:12, batch_id:200, loss:0.0233,             acc:0.9762 Tp/Tn_1/Tn_2: 50230/217/1009Eval of epoch 12 => acc:0.9757, loss:0.0177Saved best model of epoch12, acc 0.9757, save path "./runs"Epoch 8: CosineAnnealingDecay set learning rate to 0.000905463412215599.Epoch 13: LinearWarmup set learning rate to 0.000905463412215599.2023-07-27 13:40:19 || Epoch 13 start:epoch:13, batch_id:0, loss:0.0058,             acc:0.9922 Tp/Tn_1/Tn_2: 254/1/1epoch:13, batch_id:50, loss:0.0078,             acc:0.9788 Tp/Tn_1/Tn_2: 12779/43/234epoch:13, batch_id:100, loss:0.0080,             acc:0.9780 Tp/Tn_1/Tn_2: 25287/92/477epoch:13, batch_id:150, loss:0.0355,             acc:0.9780 Tp/Tn_1/Tn_2: 37804/141/711epoch:13, batch_id:200, loss:0.0257,             acc:0.9784 Tp/Tn_1/Tn_2: 50345/190/921Eval of epoch 13 => acc:0.9772, loss:0.0168Saved best model of epoch13, acc 0.9772, save path "./runs"Epoch 9: CosineAnnealingDecay set learning rate to 0.0008814009529720154.Epoch 14: LinearWarmup set learning rate to 0.0008814009529720154.2023-07-27 13:42:34 || Epoch 14 start:epoch:14, batch_id:0, loss:0.0075,             acc:0.9883 Tp/Tn_1/Tn_2: 253/0/3epoch:14, batch_id:50, loss:0.0097,             acc:0.9809 Tp/Tn_1/Tn_2: 12807/48/201epoch:14, batch_id:100, loss:0.0088,             acc:0.9803 Tp/Tn_1/Tn_2: 25346/96/414epoch:14, batch_id:150, loss:0.0239,             acc:0.9795 Tp/Tn_1/Tn_2: 37862/148/646epoch:14, batch_id:200, loss:0.0091,             acc:0.9794 Tp/Tn_1/Tn_2: 50397/194/865Eval of epoch 14 => acc:0.9778, loss:0.0162Saved best model of epoch14, acc 0.9778, save path "./runs"Epoch 10: CosineAnnealingDecay set learning rate to 0.000855017856687341.Epoch 15: LinearWarmup set learning rate to 0.000855017856687341.2023-07-27 13:44:53 || Epoch 15 start:epoch:15, batch_id:0, loss:0.0075,             acc:0.9844 Tp/Tn_1/Tn_2: 252/0/4epoch:15, batch_id:50, loss:0.0075,             acc:0.9814 Tp/Tn_1/Tn_2: 12813/28/215epoch:15, batch_id:100, loss:0.0178,             acc:0.9817 Tp/Tn_1/Tn_2: 25383/66/407epoch:15, batch_id:150, loss:0.0193,             acc:0.9820 Tp/Tn_1/Tn_2: 37959/100/597epoch:15, batch_id:200, loss:0.0099,             acc:0.9818 Tp/Tn_1/Tn_2: 50517/147/792Eval of epoch 15 => acc:0.9785, loss:0.0155Saved best model of epoch15, acc 0.9785, save path "./runs"Epoch 11: CosineAnnealingDecay set learning rate to 0.0008264767839234411.Epoch 16: LinearWarmup set learning rate to 0.0008264767839234411.2023-07-27 13:47:12 || Epoch 16 start:epoch:16, batch_id:0, loss:0.0216,             acc:0.9688 Tp/Tn_1/Tn_2: 248/0/8epoch:16, batch_id:50, loss:0.0061,             acc:0.9833 Tp/Tn_1/Tn_2: 12838/35/183epoch:16, batch_id:100, loss:0.0131,             acc:0.9831 Tp/Tn_1/Tn_2: 25420/70/366epoch:16, batch_id:150, loss:0.0040,             acc:0.9834 Tp/Tn_1/Tn_2: 38013/117/526epoch:16, batch_id:200, loss:0.0064,             acc:0.9831 Tp/Tn_1/Tn_2: 50587/160/709Eval of epoch 16 => acc:0.9786, loss:0.0148Saved best model of epoch16, acc 0.9786, save path "./runs"Epoch 12: CosineAnnealingDecay set learning rate to 0.0007959536998847742.Epoch 17: LinearWarmup set learning rate to 0.0007959536998847742.2023-07-27 13:49:29 || Epoch 17 start:epoch:17, batch_id:0, loss:0.0169,             acc:0.9844 Tp/Tn_1/Tn_2: 252/0/4epoch:17, batch_id:50, loss:0.0070,             acc:0.9845 Tp/Tn_1/Tn_2: 12853/42/161epoch:17, batch_id:100, loss:0.0067,             acc:0.9825 Tp/Tn_1/Tn_2: 25403/80/373epoch:17, batch_id:150, loss:0.0193,             acc:0.9827 Tp/Tn_1/Tn_2: 37989/129/538epoch:17, batch_id:200, loss:0.0085,             acc:0.9833 Tp/Tn_1/Tn_2: 50599/155/702Eval of epoch 17 => acc:0.9797, loss:0.0144Saved best model of epoch17, acc 0.9797, save path "./runs"Epoch 13: CosineAnnealingDecay set learning rate to 0.0007636367895343947.Epoch 18: LinearWarmup set learning rate to 0.0007636367895343947.2023-07-27 13:51:45 || Epoch 18 start:epoch:18, batch_id:0, loss:0.0047,             acc:0.9961 Tp/Tn_1/Tn_2: 255/0/1epoch:18, batch_id:50, loss:0.0091,             acc:0.9848 Tp/Tn_1/Tn_2: 12857/32/167epoch:18, batch_id:100, loss:0.0121,             acc:0.9844 Tp/Tn_1/Tn_2: 25452/59/345epoch:18, batch_id:150, loss:0.0130,             acc:0.9846 Tp/Tn_1/Tn_2: 38059/90/507epoch:18, batch_id:200, loss:0.0141,             acc:0.9846 Tp/Tn_1/Tn_2: 50663/130/663Eval of epoch 18 => acc:0.9804, loss:0.0138Saved best model of epoch18, acc 0.9804, save path "./runs"Epoch 14: CosineAnnealingDecay set learning rate to 0.0007297252973710757.Epoch 19: LinearWarmup set learning rate to 0.0007297252973710757.2023-07-27 13:54:00 || Epoch 19 start:epoch:19, batch_id:0, loss:0.0076,             acc:0.9844 Tp/Tn_1/Tn_2: 252/0/4epoch:19, batch_id:50, loss:0.0050,             acc:0.9849 Tp/Tn_1/Tn_2: 12859/32/165epoch:19, batch_id:100, loss:0.0146,             acc:0.9853 Tp/Tn_1/Tn_2: 25476/63/317epoch:19, batch_id:150, loss:0.0035,             acc:0.9858 Tp/Tn_1/Tn_2: 38107/87/462epoch:19, batch_id:200, loss:0.0061,             acc:0.9856 Tp/Tn_1/Tn_2: 50713/120/623Eval of epoch 19 => acc:0.9812, loss:0.0138Saved best model of epoch19, acc 0.9812, save path "./runs"Epoch 15: CosineAnnealingDecay set learning rate to 0.0006944282990207195.Epoch 20: LinearWarmup set learning rate to 0.0006944282990207195.2023-07-27 13:56:15 || Epoch 20 start:epoch:20, batch_id:0, loss:0.0080,             acc:0.9883 Tp/Tn_1/Tn_2: 253/0/3epoch:20, batch_id:50, loss:0.0089,             acc:0.9860 Tp/Tn_1/Tn_2: 12873/25/158epoch:20, batch_id:100, loss:0.0161,             acc:0.9858 Tp/Tn_1/Tn_2: 25488/55/313epoch:20, batch_id:150, loss:0.0112,             acc:0.9864 Tp/Tn_1/Tn_2: 38132/77/447epoch:20, batch_id:200, loss:0.0057,             acc:0.9862 Tp/Tn_1/Tn_2: 50744/107/605Saved log ecpch-20Eval of epoch 20 => acc:0.9813, loss:0.0134Saved best model of epoch20, acc 0.9813, save path "./runs"Epoch 16: CosineAnnealingDecay set learning rate to 0.000657963412215599.Epoch 21: LinearWarmup set learning rate to 0.000657963412215599.2023-07-27 13:58:31 || Epoch 21 start:epoch:21, batch_id:0, loss:0.0319,             acc:0.9844 Tp/Tn_1/Tn_2: 252/3/1epoch:21, batch_id:50, loss:0.0204,             acc:0.9850 Tp/Tn_1/Tn_2: 12860/29/167epoch:21, batch_id:100, loss:0.0085,             acc:0.9858 Tp/Tn_1/Tn_2: 25488/53/315epoch:21, batch_id:150, loss:0.0323,             acc:0.9862 Tp/Tn_1/Tn_2: 38124/79/453epoch:21, batch_id:200, loss:0.0075,             acc:0.9866 Tp/Tn_1/Tn_2: 50764/104/588Eval of epoch 21 => acc:0.9824, loss:0.0128Saved best model of epoch21, acc 0.9824, save path "./runs"Epoch 17: CosineAnnealingDecay set learning rate to 0.0006205554551086733.Epoch 22: LinearWarmup set learning rate to 0.0006205554551086733.2023-07-27 14:00:46 || Epoch 22 start:epoch:22, batch_id:0, loss:0.0116,             acc:0.9844 Tp/Tn_1/Tn_2: 252/0/4epoch:22, batch_id:50, loss:0.0096,             acc:0.9880 Tp/Tn_1/Tn_2: 12899/23/134epoch:22, batch_id:100, loss:0.0068,             acc:0.9870 Tp/Tn_1/Tn_2: 25521/63/272epoch:22, batch_id:150, loss:0.0063,             acc:0.9876 Tp/Tn_1/Tn_2: 38175/84/397epoch:22, batch_id:200, loss:0.0104,             acc:0.9878 Tp/Tn_1/Tn_2: 50826/102/528Eval of epoch 22 => acc:0.9822, loss:0.0129Epoch 18: CosineAnnealingDecay set learning rate to 0.0005824350601949143.Epoch 23: LinearWarmup set learning rate to 0.0005824350601949143.2023-07-27 14:03:02 || Epoch 23 start:epoch:23, batch_id:0, loss:0.0049,             acc:0.9922 Tp/Tn_1/Tn_2: 254/1/1epoch:23, batch_id:50, loss:0.0056,             acc:0.9878 Tp/Tn_1/Tn_2: 12897/21/138epoch:23, batch_id:100, loss:0.0058,             acc:0.9876 Tp/Tn_1/Tn_2: 25535/50/271epoch:23, batch_id:150, loss:0.0023,             acc:0.9876 Tp/Tn_1/Tn_2: 38175/77/404epoch:23, batch_id:200, loss:0.0041,             acc:0.9878 Tp/Tn_1/Tn_2: 50827/99/530Eval of epoch 23 => acc:0.9822, loss:0.0125Epoch 19: CosineAnnealingDecay set learning rate to 0.0005438372523852833.Epoch 24: LinearWarmup set learning rate to 0.0005438372523852833.2023-07-27 14:05:22 || Epoch 24 start:epoch:24, batch_id:0, loss:0.0029,             acc:0.9961 Tp/Tn_1/Tn_2: 255/0/1epoch:24, batch_id:50, loss:0.0065,             acc:0.9869 Tp/Tn_1/Tn_2: 12885/28/143epoch:24, batch_id:100, loss:0.0044,             acc:0.9877 Tp/Tn_1/Tn_2: 25537/52/267epoch:24, batch_id:150, loss:0.0028,             acc:0.9891 Tp/Tn_1/Tn_2: 38234/65/357epoch:24, batch_id:200, loss:0.0007,             acc:0.9887 Tp/Tn_1/Tn_2: 50875/83/498Eval of epoch 24 => acc:0.9834, loss:0.0121Saved best model of epoch24, acc 0.9834, save path "./runs"Epoch 20: CosineAnnealingDecay set learning rate to 0.000505.Epoch 25: LinearWarmup set learning rate to 0.000505.2023-07-27 14:07:41 || Epoch 25 start:epoch:25, batch_id:0, loss:0.0111,             acc:0.9844 Tp/Tn_1/Tn_2: 252/0/4epoch:25, batch_id:50, loss:0.0031,             acc:0.9896 Tp/Tn_1/Tn_2: 12920/21/115epoch:25, batch_id:100, loss:0.0046,             acc:0.9896 Tp/Tn_1/Tn_2: 25586/45/225epoch:25, batch_id:150, loss:0.0075,             acc:0.9891 Tp/Tn_1/Tn_2: 38236/73/347epoch:25, batch_id:200, loss:0.0018,             acc:0.9892 Tp/Tn_1/Tn_2: 50901/97/458Eval of epoch 25 => acc:0.9830, loss:0.0120Epoch 21: CosineAnnealingDecay set learning rate to 0.0004661627476147168.Epoch 26: LinearWarmup set learning rate to 0.0004661627476147168.2023-07-27 14:09:58 || Epoch 26 start:epoch:26, batch_id:0, loss:0.0084,             acc:0.9922 Tp/Tn_1/Tn_2: 254/0/2epoch:26, batch_id:50, loss:0.0024,             acc:0.9897 Tp/Tn_1/Tn_2: 12922/29/105epoch:26, batch_id:100, loss:0.0021,             acc:0.9894 Tp/Tn_1/Tn_2: 25583/52/221epoch:26, batch_id:150, loss:0.0017,             acc:0.9892 Tp/Tn_1/Tn_2: 38239/66/351epoch:26, batch_id:200, loss:0.0042,             acc:0.9893 Tp/Tn_1/Tn_2: 50906/81/469Eval of epoch 26 => acc:0.9829, loss:0.0120Epoch 22: CosineAnnealingDecay set learning rate to 0.0004275649398050859.Epoch 27: LinearWarmup set learning rate to 0.0004275649398050859.2023-07-27 14:12:15 || Epoch 27 start:epoch:27, batch_id:0, loss:0.0072,             acc:0.9844 Tp/Tn_1/Tn_2: 252/0/4epoch:27, batch_id:50, loss:0.0022,             acc:0.9881 Tp/Tn_1/Tn_2: 12900/32/124epoch:27, batch_id:100, loss:0.0169,             acc:0.9889 Tp/Tn_1/Tn_2: 25568/57/231epoch:27, batch_id:150, loss:0.0024,             acc:0.9893 Tp/Tn_1/Tn_2: 38243/71/342epoch:27, batch_id:200, loss:0.0031,             acc:0.9894 Tp/Tn_1/Tn_2: 50909/89/458Eval of epoch 27 => acc:0.9833, loss:0.0119Epoch 23: CosineAnnealingDecay set learning rate to 0.0003894445448913269.Epoch 28: LinearWarmup set learning rate to 0.0003894445448913269.2023-07-27 14:14:31 || Epoch 28 start:epoch:28, batch_id:0, loss:0.0051,             acc:0.9844 Tp/Tn_1/Tn_2: 252/0/4epoch:28, batch_id:50, loss:0.0014,             acc:0.9895 Tp/Tn_1/Tn_2: 12919/20/117epoch:28, batch_id:100, loss:0.0064,             acc:0.9897 Tp/Tn_1/Tn_2: 25589/44/223epoch:28, batch_id:150, loss:0.0022,             acc:0.9896 Tp/Tn_1/Tn_2: 38253/61/342epoch:28, batch_id:200, loss:0.0049,             acc:0.9895 Tp/Tn_1/Tn_2: 50918/85/453Eval of epoch 28 => acc:0.9833, loss:0.0117Epoch 24: CosineAnnealingDecay set learning rate to 0.0003520365877844011.Epoch 29: LinearWarmup set learning rate to 0.0003520365877844011.2023-07-27 14:16:48 || Epoch 29 start:epoch:29, batch_id:0, loss:0.0044,             acc:0.9883 Tp/Tn_1/Tn_2: 253/1/2epoch:29, batch_id:50, loss:0.0087,             acc:0.9891 Tp/Tn_1/Tn_2: 12914/22/120epoch:29, batch_id:100, loss:0.0026,             acc:0.9901 Tp/Tn_1/Tn_2: 25600/35/221epoch:29, batch_id:150, loss:0.0053,             acc:0.9900 Tp/Tn_1/Tn_2: 38271/59/326epoch:29, batch_id:200, loss:0.0129,             acc:0.9900 Tp/Tn_1/Tn_2: 50942/79/435Eval of epoch 29 => acc:0.9838, loss:0.0116Saved best model of epoch29, acc 0.9838, save path "./runs"Epoch 25: CosineAnnealingDecay set learning rate to 0.0003155717009792806.Epoch 30: LinearWarmup set learning rate to 0.0003155717009792806.2023-07-27 14:19:02 || Epoch 30 start:epoch:30, batch_id:0, loss:0.0021,             acc:0.9961 Tp/Tn_1/Tn_2: 255/0/1epoch:30, batch_id:50, loss:0.0052,             acc:0.9897 Tp/Tn_1/Tn_2: 12921/20/115epoch:30, batch_id:100, loss:0.0035,             acc:0.9902 Tp/Tn_1/Tn_2: 25602/46/208epoch:30, batch_id:150, loss:0.0025,             acc:0.9903 Tp/Tn_1/Tn_2: 38281/73/302epoch:30, batch_id:200, loss:0.0030,             acc:0.9902 Tp/Tn_1/Tn_2: 50954/88/414Eval of epoch 30 => acc:0.9839, loss:0.0116Saved best model of epoch30, acc 0.9839, save path "./runs"Epoch 26: CosineAnnealingDecay set learning rate to 0.0002802747026289244.Epoch 31: LinearWarmup set learning rate to 0.0002802747026289244.2023-07-27 14:21:17 || Epoch 31 start:epoch:31, batch_id:0, loss:0.0085,             acc:0.9844 Tp/Tn_1/Tn_2: 252/0/4epoch:31, batch_id:50, loss:0.0040,             acc:0.9926 Tp/Tn_1/Tn_2: 12960/7/89epoch:31, batch_id:100, loss:0.0104,             acc:0.9915 Tp/Tn_1/Tn_2: 25636/32/188epoch:31, batch_id:150, loss:0.0017,             acc:0.9908 Tp/Tn_1/Tn_2: 38300/55/301epoch:31, batch_id:200, loss:0.0060,             acc:0.9902 Tp/Tn_1/Tn_2: 50952/81/423Eval of epoch 31 => acc:0.9842, loss:0.0115Saved best model of epoch31, acc 0.9842, save path "./runs"Epoch 27: CosineAnnealingDecay set learning rate to 0.0002463632104656054.Epoch 32: LinearWarmup set learning rate to 0.0002463632104656054.2023-07-27 14:23:36 || Epoch 32 start:epoch:32, batch_id:0, loss:0.0040,             acc:0.9961 Tp/Tn_1/Tn_2: 255/0/1epoch:32, batch_id:50, loss:0.0020,             acc:0.9917 Tp/Tn_1/Tn_2: 12947/19/90epoch:32, batch_id:100, loss:0.0056,             acc:0.9910 Tp/Tn_1/Tn_2: 25623/36/197epoch:32, batch_id:150, loss:0.0016,             acc:0.9906 Tp/Tn_1/Tn_2: 38291/57/308epoch:32, batch_id:200, loss:0.0043,             acc:0.9906 Tp/Tn_1/Tn_2: 50974/80/402Eval of epoch 32 => acc:0.9838, loss:0.0115Epoch 28: CosineAnnealingDecay set learning rate to 0.00021404630011522585.Epoch 33: LinearWarmup set learning rate to 0.00021404630011522585.2023-07-27 14:25:51 || Epoch 33 start:epoch:33, batch_id:0, loss:0.0026,             acc:0.9961 Tp/Tn_1/Tn_2: 255/0/1epoch:33, batch_id:50, loss:0.0023,             acc:0.9904 Tp/Tn_1/Tn_2: 12931/23/102epoch:33, batch_id:100, loss:0.0130,             acc:0.9909 Tp/Tn_1/Tn_2: 25620/41/195epoch:33, batch_id:150, loss:0.0057,             acc:0.9908 Tp/Tn_1/Tn_2: 38302/55/299epoch:33, batch_id:200, loss:0.0029,             acc:0.9911 Tp/Tn_1/Tn_2: 50999/74/383Eval of epoch 33 => acc:0.9839, loss:0.0115Epoch 29: CosineAnnealingDecay set learning rate to 0.00018352321607655915.Epoch 34: LinearWarmup set learning rate to 0.00018352321607655915.2023-07-27 14:28:06 || Epoch 34 start:epoch:34, batch_id:0, loss:0.0104,             acc:0.9883 Tp/Tn_1/Tn_2: 253/1/2epoch:34, batch_id:50, loss:0.0019,             acc:0.9918 Tp/Tn_1/Tn_2: 12949/21/86epoch:34, batch_id:100, loss:0.0054,             acc:0.9913 Tp/Tn_1/Tn_2: 25632/40/184epoch:34, batch_id:150, loss:0.0043,             acc:0.9911 Tp/Tn_1/Tn_2: 38312/52/292epoch:34, batch_id:200, loss:0.0021,             acc:0.9910 Tp/Tn_1/Tn_2: 50994/75/387Eval of epoch 34 => acc:0.9836, loss:0.0114Epoch 30: CosineAnnealingDecay set learning rate to 0.000154982143312659.Epoch 35: LinearWarmup set learning rate to 0.000154982143312659.2023-07-27 14:30:23 || Epoch 35 start:epoch:35, batch_id:0, loss:0.0033,             acc:0.9961 Tp/Tn_1/Tn_2: 255/1/0epoch:35, batch_id:50, loss:0.0076,             acc:0.9917 Tp/Tn_1/Tn_2: 12948/18/90epoch:35, batch_id:100, loss:0.0009,             acc:0.9917 Tp/Tn_1/Tn_2: 25642/38/176epoch:35, batch_id:150, loss:0.0035,             acc:0.9915 Tp/Tn_1/Tn_2: 38328/57/271epoch:35, batch_id:200, loss:0.0037,             acc:0.9914 Tp/Tn_1/Tn_2: 51013/72/371Eval of epoch 35 => acc:0.9843, loss:0.0113Saved best model of epoch35, acc 0.9843, save path "./runs"Epoch 31: CosineAnnealingDecay set learning rate to 0.0001285990470279847.Epoch 36: LinearWarmup set learning rate to 0.0001285990470279847.2023-07-27 14:32:39 || Epoch 36 start:epoch:36, batch_id:0, loss:0.0057,             acc:0.9883 Tp/Tn_1/Tn_2: 253/0/3epoch:36, batch_id:50, loss:0.0112,             acc:0.9913 Tp/Tn_1/Tn_2: 12942/22/92epoch:36, batch_id:100, loss:0.0022,             acc:0.9909 Tp/Tn_1/Tn_2: 25621/42/193epoch:36, batch_id:150, loss:0.0024,             acc:0.9913 Tp/Tn_1/Tn_2: 38319/55/282epoch:36, batch_id:200, loss:0.0041,             acc:0.9913 Tp/Tn_1/Tn_2: 51007/76/373Eval of epoch 36 => acc:0.9841, loss:0.0113Epoch 32: CosineAnnealingDecay set learning rate to 0.00010453658778440107.Epoch 37: LinearWarmup set learning rate to 0.00010453658778440107.2023-07-27 14:34:57 || Epoch 37 start:epoch:37, batch_id:0, loss:0.0035,             acc:0.9961 Tp/Tn_1/Tn_2: 255/0/1epoch:37, batch_id:50, loss:0.0025,             acc:0.9913 Tp/Tn_1/Tn_2: 12943/18/95epoch:37, batch_id:100, loss:0.0018,             acc:0.9918 Tp/Tn_1/Tn_2: 25644/36/176epoch:37, batch_id:150, loss:0.0049,             acc:0.9919 Tp/Tn_1/Tn_2: 38341/52/263epoch:37, batch_id:200, loss:0.0031,             acc:0.9915 Tp/Tn_1/Tn_2: 51020/71/365Eval of epoch 37 => acc:0.9843, loss:0.0113Saved best model of epoch37, acc 0.9843, save path "./runs"Epoch 33: CosineAnnealingDecay set learning rate to 8.294311864472437e-05.Epoch 38: LinearWarmup set learning rate to 8.294311864472437e-05.2023-07-27 14:37:16 || Epoch 38 start:epoch:38, batch_id:0, loss:0.0019,             acc:0.9961 Tp/Tn_1/Tn_2: 255/0/1epoch:38, batch_id:50, loss:0.0070,             acc:0.9921 Tp/Tn_1/Tn_2: 12953/16/87epoch:38, batch_id:100, loss:0.0009,             acc:0.9921 Tp/Tn_1/Tn_2: 25653/41/162epoch:38, batch_id:150, loss:0.0053,             acc:0.9922 Tp/Tn_1/Tn_2: 38356/56/244epoch:38, batch_id:200, loss:0.0121,             acc:0.9921 Tp/Tn_1/Tn_2: 51048/72/336Eval of epoch 38 => acc:0.9839, loss:0.0113Epoch 34: CosineAnnealingDecay set learning rate to 6.395177052675794e-05.Epoch 39: LinearWarmup set learning rate to 6.395177052675794e-05.2023-07-27 14:39:32 || Epoch 39 start:epoch:39, batch_id:0, loss:0.0059,             acc:0.9883 Tp/Tn_1/Tn_2: 253/0/3epoch:39, batch_id:50, loss:0.0037,             acc:0.9926 Tp/Tn_1/Tn_2: 12960/17/79epoch:39, batch_id:100, loss:0.0056,             acc:0.9923 Tp/Tn_1/Tn_2: 25657/30/169epoch:39, batch_id:150, loss:0.0050,             acc:0.9924 Tp/Tn_1/Tn_2: 38361/48/247epoch:39, batch_id:200, loss:0.0080,             acc:0.9920 Tp/Tn_1/Tn_2: 51044/61/351Eval of epoch 39 => acc:0.9843, loss:0.0113Epoch 35: CosineAnnealingDecay set learning rate to 4.7679631406913064e-05.Epoch 40: LinearWarmup set learning rate to 4.7679631406913064e-05.

验证,测试

当batchsize从256设置为1时,验证集的准确率从95.23%降低到93.96%,可能是网络中如下代码的问题

# line 103f_pow = paddle.pow(f, 2)f_mean = paddle.mean(f_pow)f = paddle.divide(f, f_mean)

这里的mean方法与batch耦合,可以考虑限制维度来解耦(只在每个batch内做平均)比如:

f_mean = paddle.mean(f_pow, axis=[1,2,3], keepdim=True)

模型对batch解耦后,改变batchsize大小,不会影响最终精度

验证

In [9]

import paddle.vision.transforms as Tfrom paddle.io import DataLoaderimport timefrom statistics import mean# 参数定义IMGSIZE = (94, 24)IMGDIR = 'rec_images/data'VALIDFILE = 'rec_images/valid.txt'LPRMAXLEN = 18EVALBATCHSIZE = 1  # batch sizeNUMWORKERS = 2# 图片预处理eval_transforms = T.Compose([                T.ToTensor(data_format='CHW'),             T.Normalize(                [0.5, 0.5, 0.5],  # 在totensor的时候已经将图片缩放到0-1                [0.5, 0.5, 0.5],                data_format='CHW'             ),         ])# 数据加载eval_data_set = LprnetDataloader(IMGDIR, VALIDFILE, eval_transforms)eval_loader = DataLoader(    eval_data_set,     batch_size=EVALBATCHSIZE,     shuffle=False,     num_workers=NUMWORKERS,     drop_last=False,     collate_fn=collate_fn)# 定义lossloss_func = nn.CTCLoss(len(CHARS)-1)# input_length, loss计算需要input_length = np.ones(shape=TRAINBATCHSIZE) * LPRMAXLENinput_length = paddle.to_tensor(input_length, dtype='int64')# LPRNet网络,添加模型权重model = LPRNet(LPRMAXLEN, len(CHARS), DROPOUT)load_pretrained(model, 'runs/lprnet_best_2')  # accacc_eval = ACC()# 验证# evalwith paddle.no_grad():    model.eval()    loss_list = []    for batch_id, bath_data in enumerate(eval_loader):        img_data, label_data, label_lens = bath_data        predict = model(img_data)        logits = paddle.transpose(predict, (2,0,1))        loss = loss_func(logits, label_data, input_length, label_lens)        acc_eval.batch_update(label_data, label_lens, predict)        loss_list.append(loss.item())    print(f'Eval from {VALIDFILE} => acc:{acc_eval.acc:.4f}, loss:{mean(loss_list):.4f}')    acc_eval.clear()
params loading...load runs/lprnet_best_2.pdparams success...Eval from rec_images/valid.txt => acc:0.9843, loss:0.0114

预测结果可视化

这里仍然是以动态图的方式进行预测,想要部署的话建议转静态图

https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/jit/index_cn.html

In [11]

"""此部分为测试的可视化代码, 后处理可参考"""import cv2import matplotlib.pyplot as pltimport numpy as npimport paddle%matplotlib inlineimg_path = 'rec_images/data/皖AF358Z.jpg'img_data = cv2.imread(img_path)img_data = img_data[:,:,::-1]  # BGR to RGBplt.imshow(img_data)plt.axis('off')plt.show()# 数据前处理img_data = cv2.resize(img_data,(94, 24))img_data = (img_data - 127.5) / 127.5  # 归一化img_data = np.transpose(img_data, (2,0,1))  # HWC to CHWimg_data = np.expand_dims(img_data, 0)  # to BCHWimg_tensor = paddle.to_tensor(img_data, dtype='float32')  # shape == [1, 3, 24, 94]print(img_tensor.shape)# 加载模型, 预测CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',         '新',         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',         'W', 'X', 'Y', 'Z', 'I', 'O', '-'         ]LPRMAXLEN = 18model = LPRNet(LPRMAXLEN, len(CHARS), dropout_rate=0)load_pretrained(model, 'runs/lprnet_best_2')out_data = model(img_tensor)  # out_data.shape == [1, 68, 18]# 后处理,单张图片数据def reprocess(pred):    pred_data = pred[0]    pred_label = np.argmax(pred_data, axis=0)    no_repeat_blank_label = []    pre_c = pred_label[0]    if pre_c != len(CHARS) - 1:  # 非空白        no_repeat_blank_label.append(pre_c)    for c in pred_label:  # dropout repeate label and blank label        if (pre_c == c) or (c == len(CHARS) - 1):            if c == len(CHARS) - 1:                pre_c = c            continue        no_repeat_blank_label.append(c)        pre_c = c    char_list = [CHARS[i] for i in no_repeat_blank_label]    return ''.join(char_list)rep_result = reprocess(out_data)print(rep_result)  # 皖AF358Z
[1, 3, 24, 94]params loading...load runs/lprnet_best_2.pdparams success...皖AF358Z

TODO

数据集分布不均,这里只用了ccpd2019的蓝牌,可以使用ccpd2020包含绿牌数据

大部分车牌都是“皖”,可以适当添加其他省份的车牌数据

3. 车牌裁切没有做矫正,想提高精度,可考虑加上车牌的矫正算法

4. 本车牌识别网络模型与batch数据耦合,可以尝试解耦后再训练

网络模型已经固定了输出序列的长度18,考虑修改为能自定义长度,让模型能适用于更多场景

模型导出

导出onnx

这里将模型从动态图导出onnx文件, 直接使用api:paddle.onnx.export

https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/onnx/export_cn.html

In [12]

model = LPRNet(18, 68, dropout_rate=0)load_pretrained(model, 'runs/lprnet_best_2')save_path = 'save_onnx/lprnet' # 需要保存的路径x_spec = paddle.static.InputSpec([1, 3, 24, 94], 'float32', 'image') paddle.onnx.export(model, save_path, input_spec=[x_spec], opset_version=11)
params loading...load runs/lprnet_best_2.pdparams success...
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:712: UserWarning: When training, we now always track global mean and variance.  "When training, we now always track global mean and variance."/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:712: UserWarning: When training, we now always track global mean and variance.  "When training, we now always track global mean and variance."/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:712: UserWarning: When training, we now always track global mean and variance.  "When training, we now always track global mean and variance."/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:712: UserWarning: When training, we now always track global mean and variance.  "When training, we now always track global mean and variance."/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:712: UserWarning: When training, we now always track global mean and variance.  "When training, we now always track global mean and variance."
2023-07-27 15:03:51 [INFO]Static PaddlePaddle model saved in save_onnx/paddle_model_static_onnx_temp_dir.[Paddle2ONNX] Start to parse PaddlePaddle model...[Paddle2ONNX] Model file path: save_onnx/paddle_model_static_onnx_temp_dir/model.pdmodel[Paddle2ONNX] Paramters file path: save_onnx/paddle_model_static_onnx_temp_dir/model.pdiparams[Paddle2ONNX] Start to parsing Paddle model...[Paddle2ONNX] Use opset_version = 11 for ONNX export.[Paddle2ONNX] PaddlePaddle model is exported as ONNX format now.2023-07-27 15:03:52 [INFO]ONNX model saved in save_onnx/lprnet.onnx.

onnx测试

可以在https://netron.app/ 中查看可视化结构

更多参考:https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/advanced/model_to_onnx_cn.html

In [ ]

!pip install onnx==1.10.2!pip install onnxruntime==1.9.0

In [14]

"""检查onnx是否合理,模型的版本、图的结构、节点及其输入和输出"""import onnxonnx_model = onnx.load("save_onnx/lprnet.onnx")check = onnx.checker.check_model(onnx_model)print('check: ', check)
check:  None

In [15]

# 导入所需的库import numpy as npimport onnxruntimeimport paddle# 随机生成输入,用于验证 Paddle 和 ONNX 的推理结果是否一致x = np.random.random((1, 3, 24, 94)).astype('float32')# predict by ONNXRuntimeonnx_path = "save_onnx/lprnet.onnx"ort_sess = onnxruntime.InferenceSession(onnx_path)ort_inputs = {ort_sess.get_inputs()[0].name: x}ort_outs = ort_sess.run(None, ort_inputs)print("Exported model has been predicted by ONNXRuntime!")# predict by Paddlemodel = paddle.jit.load("save_onnx/paddle_model_static_onnx_temp_dir/model")  # 上一步中导出onnx的时候会保存静态图文件到输出目录model.eval()paddle_input = paddle.to_tensor(x)paddle_outs = model(paddle_input)print("Original model has been predicted by Paddle!")# compare ONNXRuntime and Paddle resultsnp.testing.assert_allclose(ort_outs[0], paddle_outs.numpy(), rtol=1.0, atol=1e-05)print("The difference of results between ONNXRuntime and Paddle looks good!")
Exported model has been predicted by ONNXRuntime!Original model has been predicted by Paddle!The difference of results between ONNXRuntime and Paddle looks good!

onnx推理

推理与上面相同,只是添加了实际数据的前处理和模型输出的后处理部分

In [16]

import onnxruntimeimport cv2import matplotlib.pyplot as pltimport numpy as np%matplotlib inline# 数据预处理img_path = 'rec_images/data/皖AF358Z.jpg'img_data = cv2.imread(img_path)img_data = img_data[:,:,::-1]  # BGR to RGBplt.imshow(img_data)plt.axis('off')plt.show()img_data = cv2.resize(img_data,(94, 24))img_data = (img_data - 127.5) / 127.5  # 归一化img_data = np.transpose(img_data, (2,0,1))  # HWC to CHWimg_data = np.expand_dims(img_data, 0)  # to BCHWnp_data = np.array(img_data, dtype=np.float32)# 加载 ONNX 模型生成推理用 sessonnx_path = "save_onnx/lprnet.onnx"sess = onnxruntime.InferenceSession(onnx_path)# 使用 ONNXRuntime 推理ort_inputs = {sess.get_inputs()[0].name: np_data}result, = sess.run(None, ort_inputs)# 推理结果后处理CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',         '新',         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',         'W', 'X', 'Y', 'Z', 'I', 'O', '-'         ]def reprocess(pred):    pred_data = pred[0]    pred_label = np.argmax(pred_data, axis=0)    no_repeat_blank_label = []    pre_c = pred_label[0]    if pre_c != len(CHARS) - 1:  # 非空白        no_repeat_blank_label.append(pre_c)    for c in pred_label:  # dropout repeate label and blank label        if (pre_c == c) or (c == len(CHARS) - 1):            if c == len(CHARS) - 1:                pre_c = c            continue        no_repeat_blank_label.append(c)        pre_c = c    char_list = [CHARS[i] for i in no_repeat_blank_label]    return ''.join(char_list)plate_str = reprocess(result)print(plate_str)  # 皖AF358Z
皖AF358Z

以上就是车牌识别LPRNet的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/61831.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月11日 02:54:59
下一篇 2025年11月11日 03:32:38

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 旋转长方形后,如何计算其相对于画布左上角的轴距?

    绘制长方形并旋转,计算旋转后轴距 在拥有 1920×1080 画布中,放置一个宽高为 200×20 的长方形,其坐标位于 (100, 100)。当以任意角度旋转长方形时,如何计算它相对于画布左上角的 x、y 轴距? 以下代码提供了一个计算旋转后长方形轴距的解决方案: const x = 200;co…

    2025年12月24日
    000
  • 旋转长方形后,如何计算它与画布左上角的xy轴距?

    旋转后长方形在画布上的xy轴距计算 在画布中添加一个长方形,并将其旋转任意角度,如何计算旋转后的长方形与画布左上角之间的xy轴距? 问题分解: 要计算旋转后长方形的xy轴距,需要考虑旋转对长方形宽高和位置的影响。首先,旋转会改变长方形的长和宽,其次,旋转会改变长方形的中心点位置。 求解方法: 计算旋…

    2025年12月24日
    000
  • 旋转长方形后如何计算其在画布上的轴距?

    旋转长方形后计算轴距 假设长方形的宽、高分别为 200 和 20,初始坐标为 (100, 100),我们将它旋转一个任意角度。根据旋转矩阵公式,旋转后的新坐标 (x’, y’) 可以通过以下公式计算: x’ = x * cos(θ) – y * sin(θ)y’ = x * …

    2025年12月24日
    000
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 如何计算旋转后长方形在画布上的轴距?

    旋转后长方形与画布轴距计算 在给定的画布中,有一个长方形,在随机旋转一定角度后,如何计算其在画布上的轴距,即距离左上角的距离? 以下提供一种计算长方形相对于画布左上角的新轴距的方法: const x = 200; // 初始 x 坐标const y = 90; // 初始 y 坐标const w =…

    2025年12月24日
    200
  • CSS元素设置em和transition后,为何载入页面无放大效果?

    css元素设置em和transition后,为何载入无放大效果 很多开发者在设置了em和transition后,却发现元素载入页面时无放大效果。本文将解答这一问题。 原问题:在视频演示中,将元素设置如下,载入页面会有放大效果。然而,在个人尝试中,并未出现该效果。这是由于macos和windows系统…

    2025年12月24日
    200
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 如何计算旋转后的长方形在画布上的 XY 轴距?

    旋转长方形后计算其画布xy轴距 在创建的画布上添加了一个长方形,并提供其宽、高和初始坐标。为了视觉化旋转效果,还提供了一些旋转特定角度后的图片。 问题是如何计算任意角度旋转后,这个长方形的xy轴距。这涉及到使用三角学来计算旋转后的坐标。 以下是一个 javascript 代码示例,用于计算旋转后长方…

    2025年12月24日
    000
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信