
AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜








新CG儿
数字视觉分享平台 | AE模板_视频素材
412 查看详情




到
是逐渐增量更新的 5 个数据版本,出于保密要求,仅提供不同压缩率下模型效果的相对关系。根据 entropy law 预测,假设每次增量更新后数据质量没有显著下降,可以预期随着数据压缩率的降低,模型性能会有所提升。这一预测与图中数据版本
到
的结果一致。然而,数据版本
显示出损失和数据压缩率的异常增加,这预示了由于训练数据一致性下降导致的模型性能下降的潜在可能。这一预测通过随后的模型性能评估进一步得到证实。因此,entropy law 可以作为 LLM 训练的指导原则,无需在完整数据集上训练模型直到收敛,便可预测 LLM 训练失败的潜在风险。鉴于训练 LLM 的高昂成本,这一点尤其重要。
以上就是中科大联合华为诺亚提出Entropy Law,揭秘大模型性能、数据压缩率以及训练损失关系的详细内容,更多请关注创想鸟其它相关文章!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/792169.html
微信扫一扫
支付宝扫一扫