寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

就像动物有了眼睛,谢赛宁 Yann LeCun 团队的 Cambrian-1 能让 AI 获得强大的视觉表征学习能力。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

寒武纪1号诞生:谢赛宁yann lecun团队发布最强开源多模态llm

古往今来,许多哲学家都探究过这个问题:理解语言的含义是否需要以感官为基础?尽管哲学家们看法不一,但有一点却不言而喻:坚实有效的感官定基(grounding)至少能带来助益。

比如科学家们普遍相信,寒武纪大爆发期间视觉的出现是早期动物演化的关键一步;这不仅能帮助动物更好地找寻食物和躲避捕食者,而且还有助于动物自身的进化。事实上,人类(以及几乎所有动物)的大多数知识都是通过与物理交互的感官体验获取的,比如视觉、听觉、触觉、味觉和嗅觉。这些感官体验是我们理解周围世界的基础,也是帮助我们采取行动和决策的关键。

这些思想不仅仅能用来探究哲学概念,而且也具有实用价值,尤其是近期多模态大型语言模型(MLLM)的发展,更是让视觉表征学习与语言理解来到了实践应用的关注核心。语言模型表现出了非常强大的规模扩展行为,而多模态学习领域的近期进展也很大程度上得益于更大更好的 LLM。

另一方面,人们仍旧没有充分探索视觉组件的设计选择,并且这方面的探索与视觉表征学习的研究有所脱节。这主要是因为这方面的研究非常困难:MLLM 涉及复杂的训练和评估流程,需要考虑的设计选择非常多。

近日,纽约大学谢赛宁和 Yann LeCun 团队以视觉为中心对 MLLM 进行了探索,填补了这一空白;他们还基于这些探索成果构建了 Cambrian-1(寒武纪 1 号)系列模型。(本文有三位共同一作:Shengbang Tong(童晟邦)、Ellis Brown 和 Penghao Wu。)

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

论文标题:Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs

论文地址:https://arxiv.org/pdf/2406.16860

网站:https://cambrian-mllm.github.io

代码:https://github.com/cambrian-mllm/cambrian

模型:https://huggingface.co/nyu-visionx/

数据:https://huggingface.co/datasets/nyu-visionx/Cambrian-10M

CV-Bench:https://huggingface.co/datasets/nyu-visionx/CV-Bench

评估:https://github.com/cambrian-mllm/cambrian

具体来说,他们将 MLLM 指令微调用作了多种视觉表征的评估协议,如图 1 所示。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

该团队表示:「我们这项研究的动机源自当前多模态学习研究的两个潜在问题:1)过度且过早地依赖语言,这是一个捷径,能弥补学习有效视觉表征的不足之处;2)现有基准可能无法为真实世界场景提供足够的指导 —— 视觉定基对于稳健的多模态理解至关重要。」

这些问题并非毫无根据,因为研究者已经开始注意到:在将 MLLM 应用于一些高难度真实世界应用方面,视觉定基正在成为一大瓶颈。

从另一个角度看,传统的视觉表征学习评估协议已经变得饱和,不能反映真实世界分布中发现的各种感知难题。另一方面,使用视觉问答(VQA)形式的语言却能提供一种灵活且稳健的评估协议。

谢赛宁和 Yann LeCun 团队这项研究的目标就是探索这种新的协议设计,并从中获取新见解以引导未来的视觉表征发展。此外,为了在这种综合设置中更好地评估视觉表征,他们还开发了一个以视觉为中心的 MLLM 基准 CV-Bench,做法是将传统的视觉基准转换成 VQA 格式。

Cambrian-1 的构建基于五大关键支柱,每一支柱都能为 MLLM 的设计提供重要的见解:

视觉表征:该团队探索了多种不同的视觉编码器及其组合;

连接器设计:他们设计了一种动态且可感知空间的新型连接器,可将视觉特征与 LLM 整合到一起,同时还能降低 token 的数量。

指令微调数据:他们基于公共数据源整编了高质量视觉指令微调数据,其中格外强调了分布平衡的重要性。

指令微调配方:他们讨论了指令微调的策略和实践措施。

基准评测:他们分析了现有的 MLLM 基准,并直观地将它们分成了 4 组,然后提出了一种新的以视觉为中心的基准 CV-Bench。

基于这些支柱,该团队构建了 Cambrian-1 系列模型,其在多个基准上都表现领先,并且尤其擅长以视觉为中心的任务。该团队也发布了这项研究的模型权重、开源代码、数据集以及模型训练和评估的详细方案。

多模态 LLM 基础知识

MLLM 研究的关键组件包括大型语言模型、视觉编码器、多模态连接器、数据整编流程、指令微调策略、评估与基准评测。具体说明及相关研究请参阅原论文。

通过 MLLM 评估视觉表征

当前 MLLM 使用的视觉编码器主要是 CLIP,因为其已经与语言预对齐了,并且易于适应到 LLM token 空间。但是,强大的语言先验可能是一把双刃剑:既能弥补学习有效视觉表征时的不足,也会削减从广泛的视觉表征学习研究中获得的见解。

该团队系统性地评估了各种视觉编码器选择(见图 2)对 MLLM 的多模态能力的影响。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

他们还主张将 MLLM 评估用作一种评估视觉表征方法的稳健框架,以更忠实地反映真实世界场景中多样化的感知难题,从而更好地引导人们开发更好的视觉表征。下面我们将简要介绍其研究过程和所得发现,更多详情请参看原论文。

分析基准

基于 23 个不同视觉骨干网络,该团队使用一种两阶段指令微调过程训练了 MLLM:首先基于 ShareGPT-4V 的 1.2M 适应器数据训练连接器,之后在 737K 指令微调数据上同时微调该连接器和 LLM。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

通过比较有或无视觉输入时模型的表现(见图 3),该团队得到了以下发现:

发现 1:大多数基准未能准确地度量以视觉为中心的能力,少数能度量这些能力的基准也只有非常少的样本。

Cambrian 以视觉为中心的基准(CV-Bench)

为了解决现有以视觉为中心的基准的局限,该团队提出了 CV-Bench。其中包含 2638 个经过人工检查的样本,远多于其它以视觉为中心的 MLLM 基准 —— 比 RealWorldQA 多 3.5 倍,比 MMVP 多 8.8 倍。

如图 4 和表 1 所示,CV-Bench 能通过空间关系和目标计数来评估 2D 理解能力,能通过深度顺序(depth order)和相对距离评估 3D 理解能力。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

发现 2:可以将现有视觉基准有效地调整用于 VQA 任务,实现对以视觉为中心的 MLLM 能力的评估。

指令微调方案

MLLM 始于预训练 LLM 和视觉骨干网络,再通过投射器(MLP)等连接器将这些模块连接起来。该团队通过大量实验探究了不同的指令微调方案,并得到了以下发现。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

对于选择单阶段训练还是双阶段训练,该团队发现:

发现 3:双阶段训练是有益的;使用更多适应器数据能进一步提升结果。

在是否冻结视觉编码器方面,该团队发现:

发现 4:不冻结视觉编码器有很多好处。语言监督式模型总是有益的;SSL 模型在以视觉为中心的基准上尤其有益。

将 MLLM 用作视觉表征评估器

该团队研究了将 MLLM 用于评估视觉表征,结果见图 6,得到的发现如下:

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

新CG儿 新CG儿

数字视觉分享平台 | AE模板_视频素材

新CG儿 412 查看详情 新CG儿

发现 5:高分辨率编码器可极大提升在以图表或视觉为中心的基准上的表现,并且基于卷积网络的架构非常适合此类任务。

他们也研究了基于自监督模型的 MLLM 的持续微调能否达到与语言监督模型相近的性能,结果见图 7。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

发现 6:语言监督有很强的优势,但只要有足够的数据和适当的微调,可通过 SSL 方法缩减性能差距。

组合多个视觉编码器

该团队也探索了组合多个视觉编码器来构建更强大 MLLM 的可能性,结果见表 3。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

发现 7:组合多个视觉编码器(包括视觉 SSL 模型)可提升在多种不同基准上的 MLLM 性能,尤其是对于以视觉为中心的任务。

空间视觉聚合器(SVA):一种连接器新设计

为了有效地聚合多个视觉编码器的特征并防止插值引入的信息损失,他们使用了一个可学习的隐含查询集合,其能通过交叉注意力层与多个视觉特征交互。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

具体来说,新方法整合了两种新的以视觉为中心的设计原理:

通过为查询中的每个 token 显式地定义聚合空间,引入了空间归纳偏置。

跨 LLM 层多次聚合视觉特征,让模型能够重复访问和集成必要的视觉信息。

这种新的构建方法可以灵活地适配特征分辨率不同的多个视觉编码器,同时在聚合过程中以及与 LLM 的整合过程中保留视觉数据的空间结构。

使用前一节的最佳视觉模型组合和一个 Vicuna-1.5-7B base LLM,该团队展现了 SVA 模块的效用。

表 4 表明:SVA 在所有基准类别上均优于两个对比技术,其中在 OCR 和表格类别(需要高分辨率特征理解)上有巨大提升。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

更进一步,他们以 OpenAI CLIP ViT-L/14@336 + OpenCLIP ConvNeXt-L@1024 组合为基础进行了消融实验,结果见表 5。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

发现 8:空间归纳偏置以及 LLM 和视觉特征之间的深度交互有助于更好地聚合和凝练视觉特征。

用于训练 MLLM 的指令微调数据

数据收集

从已有数据源收集指令微调数据:

该团队既使用了涉及视觉交互数据的多模态基准和数据集(比如视觉问答(VQA)和 OCR 数据),还收集了少量高质量的纯语言指令遵从数据。他们还将这些数据分成了不同类别:一般对话、OCR、计数、代码、数学、科学和纯语言数据。图 9 给出了数据源。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

针对性的互联网数据收集引擎:如图 9 所示,数据的分布不平衡。

为了创建大规模、可靠、高质量的基于知识的指令微调数据,该团队提出了一种数据引擎。该引擎可选取一个目标域和子域(比如物理学),然后使用 GPT-4 这样的 LLM 来识别主题(比如牛顿定律)。然后,其会针对每个主题搜索维基百科等可靠信息源。该团队发现,从维基百科提取的图像 – 文本对的质量很高。

之后,该团队使用一个解析器提取出其中的图像 – 描述元组,然后将描述文本输送给一个 LLM,比如 GPT-3.5,通过精心设计的 prompt 让其生成有关图像的指令类型的问答对。这些问答对和图像就构成了他们的 VQA 数据集。

Cambrian-10M:他们创建了一个大型指令微调数据池并将其命名为 Cambrian-10M,其中包含大约 9784k 个数据点。图 9 展示了其组成情况。

数据整编

为了提升数据平衡和调整数据比例(见图 10 和 11),该团队对 Cambrian-10M 进行了整编。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

最终得到了一个更小但质量更高的数据集 Cambrian-7M。表 6 和 7 说明了对指令数据进行整编所带来的好处:尽管 Cambrian-7M 中样本更少,但所带来的性能却更好。

通过系统 prompt 缓解「答题机现象」

他们还研究了所谓的答题机现象(Answer Machine Phenomenon)。他们观察到,一个训练良好的 MLLM 也许擅长应对 VQA 基准,但缺乏基本的对话能力,默认情况下会输出简短生硬的响应。这种情况的原因是基准问题所需的响应通常限于单个选项或词,这不同于更一般更现实的用例。其它 LLM 研究也观察到了类似的现象。

他们猜测,这个问题的原因是指令微调数据包含过多的短响应 VQA 任务,这会导致 LLM 出现灾难性遗忘。

为了解决这个问题,该团队在训练期间整合了额外的系统 prompt。比如对于响应中生成单个词或短语的问题,在 prompt 中附加「使用单个词或短语来回答本问题」这样的内容。结果发现,这样的系统 prompt 可在保证模型基准性能不变的同时大幅提升其对话能力。图 12 给出了一个示例。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

此外,系统 prompt 还能通过鼓励模型使用思维链来提升推理能力。

当前最佳性能

最后,利用探索研究过程中获得的见解,该团队训练了一个新的 MLLM 模型系列:Cambrian-1。他们使用不同规模大小的 LLM 骨干网络训练了模型:LLaMA-3-Instruct-8B、Vicuna-1.5-13B、Hermes-2-Yi-34B。

他们的视觉组件通过空间视觉聚合器(SVA)组合了 4 个模型:OpenAI CLIP ViT-L/14@336、SigLIP ViT-SO400M/14@384、OpenCLIP ConvNeXt-XXL@1024、DINOv2 ViT-L/14@518。他们使用 2.5M 适应器数据对连接器进行了预训练,然后使用 Cambrian-7M 数据混合对其进行了微调。

表 8 和图 13 给出了模型的评估结果。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

可以看到,Cambrian-1 超过了 LLaVA-NeXT 和 Mini-Gemini 等开源模型。得益于 SVA,Cambrian-1 也能非常好地处理需要高分辨率图像处理的任务,即便仅使用 576 个图像 token 也能做到,大约只有 LLaVA-NeXT 和 Mini-Gemini 所用 token 数的 1/5。

Cambrian-1 在多个基准上还取得了与 GPT-4V、Gemini-Pro 和 MM-1 等最佳专有模型相当的性能。

图 14 给出了一些示例,可以看到尽管 Cambrian-1 只使用了 576 个 token,却能有效关注图像中的细节。

寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

另外,从 Cambrian-1 的命名也看得出来,这是一个雄心勃勃的团队。让我们好好期待该系列模型的下一代升级吧。

以上就是寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/793223.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月26日 15:06:01
下一篇 2025年11月26日 15:06:20

相关推荐

  • HTML、CSS 和 JavaScript 中的简单侧边栏菜单

    构建一个简单的侧边栏菜单是一个很好的主意,它可以为您的网站添加有价值的功能和令人惊叹的外观。 侧边栏菜单对于客户找到不同项目的方式很有用,而不会让他们觉得自己有太多选择,从而创造了简单性和秩序。 今天,我将分享一个简单的 HTML、CSS 和 JavaScript 源代码来创建一个简单的侧边栏菜单。…

    2025年12月24日
    200
  • 前端代码辅助工具:如何选择最可靠的AI工具?

    前端代码辅助工具:可靠性探讨 对于前端工程师来说,在HTML、CSS和JavaScript开发中借助AI工具是司空见惯的事情。然而,并非所有工具都能提供同等的可靠性。 个性化需求 关于哪个AI工具最可靠,这个问题没有一刀切的答案。每个人的使用习惯和项目需求各不相同。以下是一些影响选择的重要因素: 立…

    2025年12月24日
    000
  • 带有 HTML、CSS 和 JavaScript 工具提示的响应式侧边导航栏

    响应式侧边导航栏不仅有助于改善网站的导航,还可以解决整齐放置链接的问题,从而增强用户体验。通过使用工具提示,可以让用户了解每个链接的功能,包括设计紧凑的情况。 在本教程中,我将解释使用 html、css、javascript 创建带有工具提示的响应式侧栏导航的完整代码。 对于那些一直想要一个干净、简…

    2025年12月24日
    000
  • 布局 – CSS 挑战

    您可以在 github 仓库中找到这篇文章中的所有代码。 您可以在这里查看视觉效果: 固定导航 – 布局 – codesandbox两列 – 布局 – codesandbox三列 – 布局 – codesandbox圣杯 &#8…

    2025年12月24日
    000
  • 隐藏元素 – CSS 挑战

    您可以在 github 仓库中找到这篇文章中的所有代码。 您可以在此处查看隐藏元素的视觉效果 – codesandbox 隐藏元素 hiding elements hiding elements hiding elements hiding elements hiding element…

    2025年12月24日
    400
  • 居中 – CSS 挑战

    您可以在 github 仓库中找到这篇文章中的所有代码。 您可以在此处查看垂直中心 – codesandbox 和水平中心的视觉效果。 通过 css 居中 垂直居中 centering centering centering centering centering centering立即…

    2025年12月24日 好文分享
    300
  • 如何在 Laravel 框架中轻松集成微信支付和支付宝支付?

    如何用 laravel 框架集成微信支付和支付宝支付 问题:如何在 laravel 框架中集成微信支付和支付宝支付? 回答: 建议使用 easywechat 的 laravel 版,easywechat 是一个由腾讯工程师开发的高质量微信开放平台 sdk,已被广泛地应用于许多 laravel 项目中…

    2025年12月24日
    000
  • 如何在移动端实现子 div 在父 div 内任意滑动查看?

    如何在移动端中实现让子 div 在父 div 内任意滑动查看 在移动端开发中,有时我们需要让子 div 在父 div 内任意滑动查看。然而,使用滚动条无法实现负值移动,因此需要采用其他方法。 解决方案: 使用绝对布局(absolute)或相对布局(relative):将子 div 设置为绝对或相对定…

    2025年12月24日
    000
  • 移动端嵌套 DIV 中子 DIV 如何水平滑动?

    移动端嵌套 DIV 中子 DIV 滑动 在移动端开发中,遇到这样的问题:当子 DIV 的高度小于父 DIV 时,无法在父 DIV 中水平滚动子 DIV。 无限画布 要实现子 DIV 在父 DIV 中任意滑动,需要创建一个无限画布。使用滚动无法达到负值,因此需要使用其他方法。 相对定位 一种方法是将子…

    2025年12月24日
    000
  • 移动端项目中,如何消除rem字体大小计算带来的CSS扭曲?

    移动端项目中消除rem字体大小计算带来的css扭曲 在移动端项目中,使用rem计算根节点字体大小可以实现自适应布局。但是,此方法可能会导致页面打开时出现css扭曲,这是因为页面内容在根节点字体大小赋值后重新渲染造成的。 解决方案: 要避免这种情况,将计算根节点字体大小的js脚本移动到页面的最前面,即…

    2025年12月24日
    000
  • Nuxt 移动端项目中 rem 计算导致 CSS 变形,如何解决?

    Nuxt 移动端项目中解决 rem 计算导致 CSS 变形 在 Nuxt 移动端项目中使用 rem 计算根节点字体大小时,可能会遇到一个问题:页面内容在字体大小发生变化时会重绘,导致 CSS 变形。 解决方案: 可将计算根节点字体大小的 JS 代码块置于页面最前端的 标签内,确保在其他资源加载之前执…

    2025年12月24日
    200
  • Nuxt 移动端项目使用 rem 计算字体大小导致页面变形,如何解决?

    rem 计算导致移动端页面变形的解决方法 在 nuxt 移动端项目中使用 rem 计算根节点字体大小时,页面会发生内容重绘,导致页面打开时出现样式变形。如何避免这种现象? 解决方案: 移动根节点字体大小计算代码到页面顶部,即 head 中。 原理: flexível.js 也遇到了类似问题,它的解决…

    2025年12月24日
    000
  • 形状 – CSS 挑战

    您可以在 github 仓库中找到这篇文章中的所有代码。 您可以在此处查看 codesandbox 的视觉效果。 通过css绘制各种形状 如何在 css 中绘制正方形、梯形、三角形、异形三角形、扇形、圆形、半圆、固定宽高比、0.5px 线? shapes 0.5px line .square { w…

    2025年12月24日
    000
  • 有哪些美观的开源数字大屏驾驶舱框架?

    开源数字大屏驾驶舱框架推荐 问题:有哪些美观的开源数字大屏驾驶舱框架? 答案: 资源包 [弗若恩智能大屏驾驶舱开发资源包](https://www.fanruan.com/resource/152) 软件 [弗若恩报表 – 数字大屏可视化组件](https://www.fanruan.c…

    2025年12月24日
    000
  • 网站底部如何实现飘彩带效果?

    网站底部飘彩带效果的 js 库实现 许多网站都会在特殊节日或活动中添加一些趣味性的视觉效果,例如点击按钮后散发的五彩缤纷的彩带。对于一个特定的网站来说,其飘彩带效果的实现方式可能有以下几个方面: 以 https://dub.sh/ 网站为例,它底部按钮点击后的彩带效果是由 javascript 库实…

    2025年12月24日
    000
  • 网站彩带效果背后是哪个JS库?

    网站彩带效果背后是哪个js库? 当你访问某些网站时,点击按钮后,屏幕上会飘出五颜六色的彩带,营造出庆祝的氛围。这些效果是通过使用javascript库实现的。 问题: 哪个javascript库能够实现网站上点击按钮散发彩带的效果? 答案: 根据给定网站的源代码分析: 可以发现,该网站使用了以下js…

    好文分享 2025年12月24日
    100
  • 产品预览卡项目

    这个项目最初是来自 Frontend Mentor 的挑战,旨在使用 HTML 和 CSS 创建响应式产品预览卡。最初的任务是设计一张具有视觉吸引力和功能性的产品卡,能够无缝适应各种屏幕尺寸。这涉及使用 CSS 媒体查询来确保布局在不同设备上保持一致且用户友好。产品卡包含产品图像、标签、标题、描述和…

    2025年12月24日
    100
  • 如何利用 echarts-gl 绘制带发光的 3D 图表?

    如何绘制带发光的 3d 图表,类似于 echarts 中的示例? 为了实现类似的 3d 图表效果,需要引入 echarts-gl 库:https://github.com/ecomfe/echarts-gl。 echarts-gl 专用于在 webgl 环境中渲染 3d 图形。它提供了各种 3d 图…

    2025年12月24日
    000
  • 如何在 Element UI 的 el-rate 组件中实现 5 颗星 5 分制与百分制之间的转换?

    如何在el-rate中将5颗星5分制的分值显示为5颗星百分制? 要实现该效果,只需使用 el-rate 组件的 allow-half 属性。在设置 allow-half 属性后,获得的结果乘以 20 即可得到0-100之间的百分制分数。如下所示: score = score * 20; 动态显示鼠标…

    2025年12月24日
    100
  • CSS 最佳实践:后端程序员重温 CSS 时常见的三个疑问?

    CSS 最佳实践:提升代码质量 作为后端程序员,在重温 CSS/HTML 时,你可能会遇到一些关于最佳实践的问题。以下将解答三个常见问题,帮助你编写更规范、清晰的 CSS 代码。 1. margin 设置策略 当相邻元素都设置了 margin 时,通常情况下应为上一个元素设置 margin-bott…

    2025年12月24日
    000

发表回复

登录后才能评论
关注微信