聚焦谷歌、Meta、OpenAI的聊天机器人大比拼,ChatGPT让LeCun不满成为话题焦点

​前几天,Meta首席人工智能科学家Yann LeCun的一段对于ChatGPT的点评迅速传遍圈内外,引发了大波讨论。

在Zoom的媒体和高管小型聚会上,LeCun给出了一段令人惊讶的评价:「就底层技术而言,ChatGPT并不是多么了不得的创新。」

「虽然在公众眼中,它是革命性的,但是我们知道,它就是一个组合得很好的产品,仅此而已。」

ChatGPT不算什么创新

ChatGPT作为这几个月的聊天机器人「顶流」,早就红遍全世界,甚至切实改变了一部分人的职业生涯,以及学校教育的现状。

全世界为它惊叹的时候,LeCun对ChatGPT的点评居然如此「轻描淡写」。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

但其实,他的言论不无道理。

像ChatGPT这种数据驱动的人工智能系统,许多公司和研究型实验室有。LeCun表示,OpenAI在这个领域并没有多么独树一帜。

「除了谷歌和Meta之外,还有六家初创公司,基本上都拥有非常相似的技术。」LeCun 补充道。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

接着,LeCun小酸了一把——

「ChatGPT用的是以自监督方式进行预训练的Transformer架构,而自监督学习是本人长期以来一直提倡的,那会儿OpenAI还没诞生呢。」

其中,Transformer是谷歌的发明。这种语言神经网络,正是GPT-3等大型语言模型的基础。

而第一个神经网络语言模型,Yoshua Bengio早在20年前就提出了。Bengio的注意力机制后来被谷歌用于Transformer,之后更是成为了所有语言模型中的关键元素。

另外,ChatGPT用的是人类反馈强化学习(RLHF)的技术,也是由谷歌DeepMind实验室开创的。

在LeCun看来,ChatGPT与其说是一个科学突破,不如说是一项成功的工程案例。

OpenAI的技术「在基础科学方面并没有什么创新性,它只是设计得很好而已。」

「当然啦,我不会为此批评他们。」

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

我不是在批评OpenAI的工作,也不是在批评他们的主张。

我是想纠正公众和媒体的看法,他们普遍认为ChatGPT是一种创新且独特的技术突破,然而事实并非如此。

在纽约时报记者Cade Metz的座谈会上,LeCun感受到了好事者的疑问。

「你可能想问,为什么谷歌和Meta没有类似的系统呢?我的回答是,如果谷歌和Meta推出这种会胡说八道的聊天机器人,损失会相当惨重。」他笑着说。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

无独有偶,OpenAI被微软等金主看好、身价飙升至290亿美元的新闻一出,马库斯也连夜在博客上写了一篇文章嘲讽。

在文中,马库斯爆出一句金句:你OpenAI能做啥谷歌做不到的事,值290亿美元天价?

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

谷歌、Meta、DeepMind、OpenAI大PK!

话不多说,咱们把这几家AI巨头的聊天机器人都拉出来遛遛,用数据说话。

LeCun说许多公司和实验室都有类似ChatGPT的AI聊天机器人,此言不虚。

ChatGPT并不是第一个基于语言模型的AI聊天机器人,它有很多「前辈」。

在OpenAI之前,Meta、谷歌、DeepMind等都发布了自己的聊天机器人,比如Meta的BlenderBot、谷歌的LaMDA、DeepMind的Sparrow。

还有一些团队,也公布了自己的开源聊天机器人计划。比如,来自LAION的Open-Assistant。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

在Huggingface的一篇博客中,几位作者调查了关于RLHF、SFT、IFT、CoT(它们都是ChatGPT的关键词)这些主题的重要论文,对它们进行了分类和总结。

他们制成了一个表,根据公开访问、训练数据、模型架构和评估方向等细节,对BlenderBot、LaMDA、Sparrow和InstructGPT这些AI聊天机器人进行了比较。

注意:因为ChatGPT没有记录,所以他们使用的是InstructGPT的细节,InstructGPT是一个来自OpenAI的指令微调模型,可以被认为是ChatGPT的基础。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

LaMDA

BlenderBot 3

Sparrow

ChatGPT/ InstructGPT

组织机构

Google

Meta

DeepMind

OpenAI

访问权限

封闭

公开

封闭

有限

参数规模

1370亿

1750亿

700亿

1750亿

基础模型

未知

OPT

Chinchilla

GPT-3.5

语料库规模

2.81万亿

1000亿

1.4万亿

未知

访问网络

✔️

察言观数AskTable 察言观数AskTable

企业级AI数据表格智能体平台

察言观数AskTable 33 查看详情 察言观数AskTable

✔️

✔️

✖️

监督微调

✔️

✔️

✔️

✔️

微调数据规模

高质量:6.4K

安全性:8K

落地性:4K

IR: 49K

20个NLP数据集,范围从18K到1.2M

未知

12.7K(ChatGPT可能更多)

RLHF

✖️

✖️

✔️

✔️

人工安全规则

✖️

✖️

不难发现,尽管在训练数据、基础模型和微调方面存在许多差异,但这些聊天机器人都有一个共同点——遵循指令。

比如,你可以通过指令让ChatGPT写一首关于微调的诗。

可以看到,ChatGPT非常「识相」,写诗都不忘拍一下LeCun和Hinton两位祖师爷的马屁。

随后激情洋溢地赞颂道:「微调啊,微调,你是一支美丽的舞蹈。」

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

从预测文本到遵循指令

通常情况下,基础模型的语言建模,是不足以让模型学会如何遵循用户指令的。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

在模型的训练中,研究人员除了会采用经典的NLP任务(比如情感、文本分类、总结等),还会使用指令微调(IFT),也就是在非常多样化的任务上通过文字指令对基础模型进行微调。

其中,这些指令示例由三个主要部分组成:指令、输入和输出。

输入是可选的,有些任务只需要指令,如上面ChatGPT示例中的开放式生成。

当一个输入和输出出现时,就形成了一个示例。对于一个给定的指令,可以有多个输入和输出示例。比如下面这个例子:

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

IFT的数据,通常是人类编写的指令和使用语言模型引导的指令示例的集合。

在引导过程中,LM在few-shot(小样本)的设置中被提示(如上图),并被指示生成新的指令、输入和输出。

在每一轮中,模型会被提示从人工编写和模型产生的样本中选择。

人类和模型对创建数据集的贡献量像一个光谱一样(见下图)。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

一端是纯粹的模型生成的IFT数据集,如Unnatural Instructions,另一端是大量人工生成的指令,如Super-natural instructions。

介于这两者之间的,是使用一套规模较小但质量更高的种子数据集,然后进行引导的工作,如Self-instruct。

为IFT整理数据集的另一种方式是,利用现有的关于各种任务(包括提示)的高质量众包NLP数据集,并使用统一的模式或不同的模板将这些数据集转换成指令。

这方面的工作包括T0、自然指令数据集(Natural instructions dataset)、FLAN LM和OPT-IML。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

自然指令数据集相关论文:https://arxiv.org/abs/2104.08773

对模型进行微调

另一方面,OpenAI的InstructGPT、DeepMind的Sparrow和Anthropic的Constitutional AI都采用了基于人类反馈的强化学习(RLHF),也就是人类偏好的注释。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

在RLHF中,一组模型响应根据人类反馈进行排序(例如,选择一个更受欢迎的文字简介)。

接下来,研究人员在这些注释过的响应上训练一个偏好模型,为RL优化器返回一个标量奖励。

最后,通过强化学习训练聊天机器人来模拟这个偏好模型。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

思维链(CoT)提示,是指令示例的一个特例,它通过诱导聊天机器人逐步推理,以此来产生输出。

用CoT进行微调的模型,会使用带有人类注释的分步推理的指令数据集。

这就是那句著名的prompt——「let’s think step by step」的起源。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

下面的例子取自「Scaling Instruction-Finetuned Language Models」。其中,橙色突出了指令,粉色显示了输入和输出,蓝色是CoT推理。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

论文指出,采用CoT微调的模型,在涉及常识、算术和符号推理的任务中表现得更好。

此外,CoT微调在敏感话题方面也非常有效(有时比RLHF做得更好),尤其是可以避免模型摆烂——「对不起,我无法回答」。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

安全地遵循指令

正如刚才提到的, 指令微调的语言模型并不能永远产生有用且安全的响应。

比如,它会通过给出无用的回答来逃避,例如「对不起,我不明白」;或者对抛出敏感话题的用户输出不安全的响应。

为了改善这种行为,研究人员通过监督微调(SFT)的形式,在高质量的人类注释数据上对基础语言模型进行微调,从而提升模型的有用性和无害性。

为啥ChatGPT让LeCun酸成柠檬精?谷歌、Meta、OpenAI聊天机器人大PK!

SFT和IFT的联系非常紧密。IFT可以看作是SFT的一个子集。在最近的文献中,SFT阶段经常用于安全主题,而不是用于在IFT之后完成的特定指令主题。

在将来,它们的分类和描述应该会有更清晰的用例。

另外,谷歌的LaMDA也是在一个有安全注释的对话数据集上进行微调的,该数据集有基于一系列规则的安全注释。

这些规则通常由研究人员预先定义和开发,包含了一系列广泛的主题,包括伤害、歧视、错误信息等。

AI聊天机器人的下一步

关于AI聊天机器人,目前仍有许多开放性问题有待探索,比如:

1. RL在从人类反馈中学习方面有多重要?我们能在IFT或SFT中通过更高质量的数据训练获得RLHF的性能吗?

2. Sparrow中的SFT+RLHF,与LaMDA中仅仅使用SFT,两者的安全性如何比较?

3. 鉴于我们已经有了IFT、SFT、CoT和RLHF,那么还有多少预训练是必要的?有哪些权衡因素?最好的基础模型是哪个(包括公开的和非公开的)?

4. 现在这些模型都是精心设计的,其中研究人员会专门搜索故障模式,并根据揭露的问题影响未来的训练(包括提示和方法)。我们如何系统地记录这些方法的效果并进行复现?

总结一下

1. 与训练数据相比,只需拿出非常小的一部分用于指令微调(几百个数量级即可)。

2. 监督微调利用人类注释,可以让模型的输出更加安全和有用。

3. CoT微调提高了模型在逐步思考任务上的表现,并使模型不会总是逃避敏感问题。

参考资料:

https://huggingface.co/blog/dialog-agents

以上就是聚焦谷歌、Meta、OpenAI的聊天机器人大比拼,ChatGPT让LeCun不满成为话题焦点的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/834916.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月27日 09:49:53
下一篇 2025年11月27日 09:55:43

相关推荐

  • 怎样用免费工具美化PPT_免费美化PPT的实用方法分享

    利用KIMI智能助手可免费将PPT美化为科技感风格,但需核对文字准确性;2. 天工AI擅长优化内容结构,提升逻辑性,适合高质量内容需求;3. SlidesAI支持语音输入与自动排版,操作便捷,利于紧急场景;4. Prezo提供多种模板,自动生成图文并茂幻灯片,适合学生与初创团队。 如果您有一份内容完…

    2025年12月6日 软件教程
    000
  • Pages怎么协作编辑同一文档 Pages多人实时协作的流程

    首先启用Pages共享功能,点击右上角共享按钮并选择“添加协作者”,设置为可编辑并生成链接;接着复制链接通过邮件或社交软件发送给成员,确保其使用Apple ID登录iCloud后即可加入编辑;也可直接在共享菜单中输入邮箱地址定向邀请,设定编辑权限后发送;最后在共享面板中管理协作者权限,查看实时在线状…

    2025年12月6日 软件教程
    100
  • REDMI K90系列正式发布,售价2599元起!

    10月23日,redmi k90系列正式亮相,推出redmi k90与redmi k90 pro max两款新机。其中,redmi k90搭载骁龙8至尊版处理器、7100mah大电池及100w有线快充等多项旗舰配置,起售价为2599元,官方称其为k系列迄今为止最完整的标准版本。 图源:REDMI红米…

    2025年12月6日 行业动态
    200
  • Linux中如何安装Nginx服务_Linux安装Nginx服务的完整指南

    首先更新系统软件包,然后通过对应包管理器安装Nginx,启动并启用服务,开放防火墙端口,最后验证欢迎页显示以确认安装成功。 在Linux系统中安装Nginx服务是搭建Web服务器的第一步。Nginx以高性能、低资源消耗和良好的并发处理能力著称,广泛用于静态内容服务、反向代理和负载均衡。以下是在主流L…

    2025年12月6日 运维
    000
  • Linux journalctl与systemctl status结合分析

    先看 systemctl status 确认服务状态,再用 journalctl 查看详细日志。例如 nginx 启动失败时,systemctl status 显示 Active: failed,journalctl -u nginx 发现端口 80 被占用,结合两者可快速定位问题根源。 在 Lin…

    2025年12月6日 运维
    100
  • 华为新机发布计划曝光:Pura 90系列或明年4月登场

    近日,有数码博主透露了华为2025年至2026年的新品规划,其中pura 90系列预计在2026年4月发布,有望成为华为新一代影像旗舰。根据路线图,华为将在2025年底至2026年陆续推出mate 80系列、折叠屏新机mate x7系列以及nova 15系列,而pura 90系列则将成为2026年上…

    2025年12月6日 行业动态
    100
  • Linux如何优化系统性能_Linux系统性能优化的实用方法

    优化Linux性能需先监控资源使用,通过top、vmstat等命令分析负载,再调整内核参数如TCP优化与内存交换,结合关闭无用服务、选用合适文件系统与I/O调度器,持续按需调优以提升系统效率。 Linux系统性能优化的核心在于合理配置资源、监控系统状态并及时调整瓶颈环节。通过一系列实用手段,可以显著…

    2025年12月6日 运维
    000
  • 曝小米17 Air正在筹备 超薄机身+2亿像素+eSIM技术?

    近日,手机行业再度掀起超薄机型热潮,三星与苹果已相继推出s25 edge与iphone air等轻薄旗舰,引发市场高度关注。在此趋势下,多家国产厂商被曝正积极布局相关技术,加速抢占这一细分赛道。据业内人士消息,小米的超薄旗舰机型小米17 air已进入筹备阶段。 小米17 Pro 爆料显示,小米正在评…

    2025年12月6日 行业动态
    000
  • 荣耀手表5Pro 10月23日正式开启首销国补优惠价1359.2元起售

    荣耀手表5pro自9月25日开启全渠道预售以来,市场热度持续攀升,上市初期便迎来抢购热潮,一度出现全线售罄、供不应求的局面。10月23日,荣耀手表5pro正式迎来首销,提供蓝牙版与esim版两种选择。其中,蓝牙版本的攀登者(橙色)、开拓者(黑色)和远航者(灰色)首销期间享受国补优惠价,到手价为135…

    2025年12月6日 行业动态
    000
  • 环境搭建docker环境下如何快速部署mysql集群

    使用Docker Compose部署MySQL主从集群,通过配置文件设置server-id和binlog,编写docker-compose.yml定义主从服务并组网,启动后创建复制用户并配置主从连接,最后验证数据同步是否正常。 在Docker环境下快速部署MySQL集群,关键在于合理使用Docker…

    2025年12月6日 数据库
    000
  • Xbox删忍龙美女角色 斯宾塞致敬板垣伴信被喷太虚伪

    近日,海外游戏推主@HaileyEira公开发表言论,批评Xbox负责人菲尔·斯宾塞不配向已故的《死或生》与《忍者龙剑传》系列之父板垣伴信致敬。她指出,Xbox并未真正尊重这位传奇制作人的创作遗产,反而在宣传相关作品时对内容进行了审查和删减。 所涉游戏为年初推出的《忍者龙剑传2:黑之章》,该作采用虚…

    2025年12月6日 游戏教程
    000
  • 如何在mysql中分析索引未命中问题

    答案是通过EXPLAIN分析执行计划,检查索引使用情况,优化WHERE条件写法,避免索引失效,结合慢查询日志定位问题SQL,并根据查询模式合理设计索引。 当 MySQL 查询性能下降,很可能是索引未命中导致的。要分析这类问题,核心是理解查询执行计划、检查索引设计是否合理,并结合实际数据访问模式进行优…

    2025年12月6日 数据库
    000
  • VSCode入门:基础配置与插件推荐

    刚用VSCode,别急着装一堆东西。先把基础设好,再按需求加插件,效率高还不卡。核心就三步:界面顺手、主题舒服、功能够用。 设置中文和常用界面 打开软件,左边活动栏有五个图标,点最下面那个“扩展”。搜索“Chinese”,装上官方出的“Chinese (Simplified) Language Pa…

    2025年12月6日 开发工具
    000
  • php查询代码怎么写_php数据库查询语句编写技巧与实例

    在PHP中进行数据库查询,最常用的方式是使用MySQLi或PDO扩展连接MySQL数据库。下面介绍基本的查询代码写法、编写技巧以及实用示例,帮助你高效安全地操作数据库。 1. 使用MySQLi进行查询(面向对象方式) 这是较为推荐的方式,适合大多数中小型项目。 // 创建连接$host = ‘loc…

    2025年12月6日 后端开发
    000
  • 重现iPhone X颠覆性时刻!苹果2027年跳过19命名iPhone 20

    10月23日,有消息称,苹果或将再次调整iPhone的发布节奏,考虑跳过“iPhone 19”,并于2027年直接推出“iPhone 20”系列。 此举据传是为了庆祝初代iPhone发布二十周年,同时开启新一轮的设计革新,目标是复刻2017年iPhone X带来的划时代变革。 据悉,苹果或将告别长期…

    2025年12月6日 手机教程
    000
  • 如何在mysql中使用索引提高查询效率

    合理创建索引可显著提升MySQL查询效率,应优先为WHERE、JOIN、ORDER BY等高频字段建立B-Tree复合索引,如CREATE INDEX idx_status_created ON users(status, created_at, id),并遵循最左前缀原则;避免在索引列使用函数或前…

    2025年12月6日 数据库
    000
  • Linux命令行中free命令的使用方法

    free命令用于查看Linux内存使用情况,包括总内存、已用、空闲、共享、缓存及可用内存;使用-h可读格式显示,-s周期刷新,-c限制次数,-t显示总计,帮助快速评估系统内存状态。 free命令用于显示Linux系统中内存和交换空间的使用情况,包括物理内存、已用内存、空闲内存以及缓存和缓冲区的占用情…

    2025年12月6日 运维
    000
  • 在 Java 中使用 Argparse4j 接收 Duration 类型参数

    本文介绍了如何使用 `net.sourceforge.argparse4j` 库在 Java 命令行程序中接收 `java.time.Duration` 类型的参数。由于 `Duration` 不是原始数据类型,需要通过自定义类型转换器或工厂方法来处理。文章提供了两种实现方案,分别基于 `value…

    2025年12月6日 java
    000
  • Linux命令行中tail -f命令的详细应用

    tail -f 用于实时监控文件新增内容,常用于日志查看;支持 -F 处理轮转、-n 指定行数、结合 grep 过滤,可监控多文件,需注意权限与资源释放。 tail -f 是 Linux 中一个非常实用的命令,主要用于实时查看文件的新增内容,尤其在监控日志文件时极为常见。它会持续输出文件末尾新增的数…

    2025年12月6日 运维
    000
  • Phaser 3游戏画布响应式布局:实现高度适配与宽度裁剪

    本文深入探讨phaser 3游戏画布在特定响应式场景下的布局策略,尤其是在需要画布高度适配父容器并允许左右内容裁剪时。通过结合phaser的scalemanager中的`height_controls_width`模式与精细的css布局,本教程将展示如何实现一个既能保持游戏画面比例,又能完美融入不同…

    2025年12月6日 web前端
    000

发表回复

登录后才能评论
关注微信