edge
-
python最短路径有哪些算法
Dijkstra适用于非负权图求单源最短路径,Bellman-Ford可处理负权边并检测负环,Floyd-Warshall求解所有顶点对最短路径,A*用于启发式搜索;根据图的规模、权重特性选择合适算法。 在Python中求解最短路径问题,常用的算法有几种,每种适用于不同的图结构和场景。以下是几种主流…
-
python中Sobel算子是什么
Sobel算子通过3×3卷积核计算图像梯度实现边缘检测,使用Gx和Gy分量结合幅值与方向判断边缘,具有抗噪性强、定位准确的优点,常用作图像处理预处理步骤。 Sobel算子是图像处理和计算机视觉中常用的一种边缘检测算子,主要用于检测图像中的梯度变化,从而识别出图像的边缘。它通过计算图像在水平和垂直方向…
-
使用 OpenCV 处理摄像头帧时边缘检测效果不佳的解决方案
本文旨在解决在使用 OpenCV 从摄像头捕获的视频帧上进行边缘检测时,效果不如直接处理保存的 PNG 图像的问题。文章分析了视频帧的 MPEG 编码特性,并提供了两种解决方案:配置摄像头捕获无损压缩图像,或对视频帧进行低通滤波预处理,以抑制 JPEG 伪影,从而提高边缘检测的准确性。在使用 Ope…
-
使用 RDKit 高效可视化分子极性区域与拓扑极性表面积 (TPSA)
本文详细介绍了在 RDKit 中可视化分子极性区域和拓扑极性表面积 (TPSA) 的多种方法。从基于 Gasteiger 电荷的初步尝试,到利用 _CalcTPSAContribs 精确识别 TPSA 贡献原子,再到通过相似性图谱实现 TPSA 的渐变式“云状”可视化,本文提供了清晰的代码示例和专业…
-
RDKit分子极性区域可视化教程
本教程详细介绍了如何使用RDKit库在分子二维结构图中可视化极性区域。文章将探讨基于Gasteiger电荷的初步高亮方法及其局限性,并重点介绍两种更专业、更准确的可视化策略:利用拓扑极性表面积(TPSA)贡献值进行原子高亮,以及通过相似性图谱将TPSA贡献值以热力图形式呈现,从而清晰、直观地展示分子…
-
NumPy浮点运算精度探究:np.linalg.norm与直接平方和的细微差异
本文探讨了在NumPy中,使用np.linalg.norm计算向量范数的平方与直接计算平方和时可能出现的浮点精度差异。尽管打印输出可能显示相同结果,但底层数值可能存在微小不一致,这源于norm函数内部的开方再平方操作。文章将详细解释这一现象,并指导如何正确处理浮点数比较及理解NumPy的打印机制。 …
-
RDKit中分子极性区域的可视化:从原子电荷到TPSA相似性图
本文旨在指导用户如何利用RDKit工具包在二维分子结构中可视化极性区域。文章将介绍基于Gasteiger电荷的原子高亮方法,并指出其局限性。随后,重点讲解如何利用RDKit内置的TPSA贡献度计算功能,精确识别并高亮显示对总极性表面积有贡献的原子。最后,将展示如何通过相似性图(Similarity …
-
NumPy中np.linalg.norm的数值精度与浮点数打印陷阱解析
本文深入探讨了NumPy中np.linalg.norm与手动计算平方范数在数值精度上的差异。尽管print()输出可能显示一致,但np.array_equal可能揭示细微的浮点数不相等。这源于np.linalg.norm内部的开方操作及其后续的平方运算,以及NumPy默认的打印精度设置如何掩盖这些微…
-
理解NumPy中np.linalg.norm的数值精度差异及其浮点数比较策略
本文探讨了在NumPy中使用np.linalg.norm计算L2范数平方时,相较于手动展开计算可能引入微小的数值不精确性。这种不精确性源于np.linalg.norm内部的浮点数平方根运算。尽管打印输出可能显示相同结果,但底层数值存在差异,这是因为NumPy的默认打印精度会截断显示。文章提供了详细示…
-
RDKit中分子极性表面积(TPSA)的可视化指南
本教程详细介绍了在RDKit中准确可视化分子拓扑极性表面积(TPSA)的方法。针对Gasteiger电荷可能导致的误判,文章提供了两种更精确的解决方案:一是利用_CalcTPSAContribs直接识别并高亮对TPSA有贡献的原子,二是采用SimilarityMaps生成加权热力图,以更直观地展现T…