爬虫

  • 使用 Scrapy 框架进行多线程网页链接抓取教程

    本文将介绍如何使用 Python 的 Scrapy 框架,以更简洁高效的方式从单个 URL 中抓取所有 标签的 href 属性值,包括嵌套的 标签。Scrapy 框架内置多线程支持,并提供了强大的链接提取和页面抓取功能,能够显著简化网络爬虫的开发过程。我们将提供一个无需创建完整 Scrapy 项目的…

    2025年12月14日
    000
  • 利用Python进行网页表格数据抓取与Pandas DataFrame转换

    本教程详细介绍了如何使用Python的requests、BeautifulSoup和pandas库,从动态网页中抓取结构化的表格数据,特别是雪深信息,并将其高效地转换为Pandas DataFrame。内容涵盖了HTTP请求、HTML解析、元素定位以及数据清洗与整合,旨在提供一套完整的网页数据抓取与…

    2025年12月14日
    000
  • 使用BeautifulSoup移除HTML元素中的特定标签

    本文旨在指导开发者如何使用BeautifulSoup库从HTML文档中移除特定的标签,同时保留标签内的文本内容。通过结合select()和replace_with()方法,可以精确地定位并移除目标标签,从而实现对HTML结构的精细控制。本文将提供详细的代码示例和步骤,帮助读者理解和掌握这一技巧。 使…

    2025年12月14日
    000
  • Selenium Headless Chrome 页面空白问题解决方案

    在使用 Selenium Headless Chrome 时,开发者可能会遇到一个令人困扰的问题:尽管浏览器成功启动,但通过 driver.page_source 获取到的页面源代码却为空,显示为 html> 以上就是Selenium Headless Chrome 页面空白问题解决方案的详细…

    2025年12月14日
    000
  • 使用 Selenium 和 CSS 选择器高效抓取 Patagonia 产品数据

    本文旨在指导开发者使用 Selenium Webdriver 和 CSS 选择器从 Patagonia 网站抓取女性夹克的产品信息,包括标题、URL、图片 URL、价格、评分和评论数量。文章将提供代码示例,并着重讲解如何编写简洁高效的 CSS 选择器,以及如何处理动态加载内容和数据清洗,最终将抓取的…

    2025年12月14日
    000
  • 使用 Python 进行网页数据抓取:基础教程

    本文档旨在提供一个关于如何使用 Python 进行网页数据抓取的基础教程。我们将使用 requests 库获取网页内容,并使用 BeautifulSoup 库解析 HTML。本文将提供代码示例,并强调在进行网页抓取时需要注意的道德和法律问题,以及应对网站结构变化的方法。 网页抓取基础 网页抓取(We…

    2025年12月14日
    000
  • Python中的协程(Coroutine)和异步编程是如何工作的?

    答案:调试和优化Python异步代码需理解事件循环、使用asyncio内置工具、避免阻塞调用、合理管理任务与异常。具体包括:利用asyncio.run()和日志监控协程执行;用asyncio.create_task()并发运行任务并捕获异常;避免在协程中调用time.sleep()等阻塞函数,改用a…

    2025年12月14日
    000
  • 如何理解Python的并发与并行?

    答案:Python中并发指任务交错执行,看似同时运行,而并行指任务真正同时执行;由于GIL限制,多线程无法实现CPU并行,仅适用于I/O密集型任务,而真正的并行需依赖multiprocessing或多核支持的底层库。 理解Python的并发与并行,核心在于区分“看起来同时进行”和“实际同时进行”。并…

    2025年12月14日
    000
  • 什么是Python的GIL(全局解释器锁)?它对多线程有何影响?

    GIL是CPython解释器的全局锁,确保同一时间仅一个线程执行字节码,源于引用计数内存管理需线程安全。它使CPU密集型多线程性能受限,因多核无法并行执行;但I/O密集型任务可在等待时释放GIL,实现并发。绕过GIL的方法包括:使用multiprocessing实现多进程并行,采用asyncio处理…

    2025年12月14日
    000
  • Python的多线程和多进程有什么区别?如何选择?

    多线程共享内存受GIL限制,适合IO密集型任务;多进程独立内存空间,绕过GIL,适合CPU密集型任务。选择依据是任务主要耗时在等待IO还是占用CPU计算。 Python的多线程和多进程主要区别在于它们如何处理并发和共享资源。简单来说,多线程在同一个进程内共享内存,受限于GIL(全局解释器锁),更适合…

    2025年12月14日
    000
关注微信