新标题:ADAPT:端到端自动驾驶可解释性的初步探索

本文经自动驾驶之心公众号授权转载,转载请联系出处。

笔者的个人思考

端到端是今年非常火的一个方向,今年的CVPR best paper也颁给了UniAD,但端到端同样也存在很多问题,比如可解释性不高、训练难收敛等等,领域的一些学者开始逐渐把注意力转到端到端的可解释性上,今天为大家分享端到端可解释性的最新工作ADAPT,该方法基于Transformer架构,通过多任务联合训练的方式端到端地输出车辆动作描述及每个决策的推理。笔者对ADAPT的一些思考如下:

这里是用视频的2D 的feature来做的预测, 有可能把2D feature转化为 bev feature之后效果会更好.与LLM结合效果可能会更好, 比如 Text Generation那部分换成LLM.当前这个工作是拿历史的视频作为输入, 预测的action及其描述也是历史的, 如果改成预测将来的action以及action对应的原因的话可能更有意义.image token化那块儿得到的  token 有点儿多,可能有很多没有用的信息, 或许可以试试Token-Learner.

出发点是什么?

端到端自动驾驶在交通行业具有巨大潜力,而且目前对这方面的研究比较火热。像CVPR2023的best paper UniAD 做的就是端到端的自动驾驶。但是, 自动决策过程缺乏透明度和可解释性会阻碍它的发展, 毕竟实车上路,是要安全第一的。早期已经有一些尝试使用 attention map 图或 cost volume 来提高模型的可解释性,但这些方式很难理解。那么这篇工作的出发点,就是寻求一种好理解的方式来解释决策。下图是几种方式的对比, 显然用语言表达更容易理解。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

ADAPT有什么优势?

能够端到端地输出车辆动作描述及每个决策的推理;该方法基于transformer的网络结构, 通过multi-task的方式进行联合训练;在BDD-X(Berkeley DeepDrive eXplanation) 数据集上达到了SOTA的效果;为了验证该系统在真实场景中的有效性, 建立了一套可部署的系统, 这套系统能够输入原始的视频, 实时地输出动作的描述及推理;

效果展示

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

看效果还是非常不错的, 尤其是第三个黑夜的场景, 红绿灯都注意到了。

目前领域的进展

Video Captioning

视频描述的主要目标是用自然语言描述给定视频的对象及其关系。早期的研究工作通过在固定模板中填充识别的元素来生成具有特定句法结构的句子,这些模板不灵活且缺乏丰富性。

为了生成具有灵活句法结构的自然句子,一些方法采用序列学习的技术。具体而言,这些方法使用视频编码器来提取特征,并使用语言解码器来学习视觉文本对齐。为了使描述更加丰富,这些方法还利用对象级别的表示来获取视频中详细的对象感知交互特征

虽然现有的架构在一般 video captioning 方向取得了有一定的结果,但它不能直接应用于动作表示,因为简单地将视频描述转移到自动驾驶动作表示会丢失掉一些关键信息,比如车辆速度等,而这些对于自动驾驶任务来说至关重要。如何有效地利用这些多模态信息来生成句子目前仍在探索中。PaLM-E 在多模态句子这块儿是个不错的工作。

端到端自动驾驶

Learning-based 的自动驾驶是一个活跃的研究领域。最近CVPR2023 的best-paper UniAD, 包括后面的 FusionAD, 以及Wayve的基于World model的工作 MILE 等都是这个方向的工作。输出地形式有出轨迹点的,像UniAD, 也有直接出车辆的action的, 像MILE。

此外,一些方法对车辆、骑自行车者或行人等交通参与者的未来行为进行建模,以预测车辆的路径点,而另外一些方法则直接根据传感器输入来预测车辆的控制信号,类似于这个工作中的控制信号预测子任务

自动驾驶的可解释性

在自动驾驶领域中,大部分可解释性的方法都是基于视觉的,还有一些是基于LiDAR的工作。一些方法利用注意力图来过滤掉不显著的图像区域,使得自动驾驶车辆的行为看起来合理且可解释。然而,注意力图可能会包含一些不太重要的区域。还有一些方法使用激光雷达和高精度地图作为输入,预测其他交通参与者的边界框,并利用成本体来解释决策推理过程。此外,还有一种方法通过分割来构建在线地图,以减少对高清地图的依赖。尽管基于视觉或激光雷达的方法可以提供良好的结果,但缺乏语言解释使得整个系统看起来复杂且难以理解。一项研究首次探索了自动驾驶车辆的文本解释可能性,通过离线提取视频特征来预测控制信号,并进行视频描述的任务

自动驾驶中的Multi-task learning

这个端到端的框架采用多任务学习,用文本生成和预测控制信号这两个任务来联合训练模型。多任务学习在自动驾驶中用的非常多。由于更好的数据利用和共享特征,不同任务的联合训练提高了各个任务的性能,因此这个工作中, 采用的是控制信号预测和文本生成这两个任务的联合训练。

ADAPT方法

以下是网络结构图:

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

整个结构被分成了两个任务:

Driving Caption Generation(DCG): 输入videos, 输出两个句子, 第一句描述自车的action,第二句描述采取这个action的推理, 比如 “The car is accelerating, because the traffic lights turn green.”Control Signal Prediction(CSP) : 输入相同的videos, 输出一串控制信号, 比如速度,方向, 加速度.

其中, DCG和CSP两个任务是共享 Video Encoder, 只是采用不同的prediction heads来产生不同的最终输出。

对于 DCG 任务, 是用 vision-language transformer encoder产生两个自然语言的句子。

针对CSP任务,使用运动转换编码器来预测控制信号的序列

Video Encoder

这里采用的是 Video Swin Transformer 将输入的video frames 转为 video feature tokens。

输入  桢 image, shape 为 , 出来的feature的size 是 , 这里的  是channel的维度.

Prediction Heads

Text Generation Head

上面这个feature  , 经过token化得到  个 维度为  的video token, 然后经过一个MLP 调整维度与 text tokens的embedding对齐, 之后将 text tokens和 video tokens 一起喂给 vision-language transformer encoder, 产生动作描述和推理。

猫眼课题宝 猫眼课题宝

5分钟定创新选题,3步生成高质量标书!

猫眼课题宝 85 查看详情 猫眼课题宝

Control Signal Prediction Head

和输入的 桢video 对应着的 有 控制信号 , CSP head的输出是 , 这里每一个控制信号不一定是一维的, 可以是多维的, 比如同时包括速度,加速度,方向等。这里的做法是 把video features token化了之后, 经过motion transformer 产生一串输出信号, loss 函数是MSE,

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

需要注意的是,在这里并没有包含第一帧,因为第一帧提供的动态信息太少了

Joint Training

在这个框架中, 因为共享的video encoder, 因此其实是假设CSP和DCG这两个任务在 video representation的层面上是对齐的。出发点是动作描述和控制信号都是车辆细粒度动作的不同表达形式,动作推理解释主要关注影响车辆动作的驾驶环境。

采用联合训练的方式进行训练

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

需要注意的是, 虽然是联合训练地,但是推理的时候,却可以独立执行, CSP任务很好理解, 根据流程图直接输入视频,输出控制信号即可, 对于DCG任务, 直接输入视频, 输出描述和推理, Text 的产生是基于自回归的方式一个单词一个单词的产生, 从[CLS]开始, 结束于 [SEP]或者是达到了长度阈值。

实验设计与对比

数据集

使用的数据集是  BDD-X, 这个数据集包含了 7000段成对的视频和控制信号。每段视频大约40s, 图像的大小是 , 频率是 FPS, 每个video都有1到5种车辆的行为,比如加速,右转,并线。所有这些行为都有文本注释,包括动作叙述(例如,“汽车停下来”)和推理(例如,“因为交通灯是红色的”)。总共大约有 29000 个行为注释对。

具体实现细节

video swin transformer 在 Kinetics-600 上面预训练过vision-language transformer 和 motion transformer是随机初始化的没有固定 video swin 的参数, 所以整个是端到端训练的输入的视频桢大小经过resize和crop, 最终输入网络的是 224×224对于描述和推理,用的是WordPiece embeddings [75] 而不是整个words,  (e.g., ”stops” is cut to ”stop” and ”#s”), 每个句子的最大长度是15训练的时候对于 masked language modeling 会随机mask掉50%的tokens, 每个mask的token 有80%的概率 会成为 【MASK】这个token, 有10%的概率会随机选择一个word, 剩下的10%的概率保持不变。用的是AdamW 的优化器, 并且在前10%的训练 steps中, 有warm-up的机制用4个V100的GPU大约要训练13个小时

联合训练的影响

这里对比了三个实验说明了联合训练的有效性.

Single

指的是把CSP任务移掉,只保留着DCG的任务, 相当于只训 captioning 模型.

Single+

尽管CSP的任务仍然不存在,但在输入DCG模块时,除了视频标记之外,还需要输入控制信号标记

效果对比如下

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

相比只有DCG任务,ADAPT的Reasoning效果明显更好。虽然有控制信号输入时效果有所提升,但是仍然不及加入CSP任务的效果好。加入CSP任务后,对视频的表示和理解能力更强

另外下面这个表格也说明了联合训练对于 CSP的效果也是有提升的.

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

这里  可以理解为精度, 具体会把预测的控制信号做一个截断,公式如下

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

不同类型控制信号的影响

在实验中,使用的基础信号有速度和航向。然而,实验发现,当只使用其中任何一个信号时,效果都不如同时使用两个信号的效果好,具体数据如下表所示:

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

这表明速度和方向这两个信号可以帮助网络更好地学习动作描述和推理

动作描述与推理之间的交互

与一般描述任务相比,驾驶描述任务生成是两个句子,即动作描述和推理。通过下表可以发现:

第1,3行说明使用cross attention效果要更好一些, 这也好理解, 基于描述来做推理有利于模型的训练;第2,3行说明交换推理和描述的顺序也会掉点, 这说明了推理是依赖于描述的;后面三行对比来看, 只输出描述和只输出推理都不如二者都输出的时候效果好;

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

Sampling Rates 的影响

这个结果是可以猜到的, 使用的帧越多,结果越好,但是对应的速度也会变慢, 如下表所示

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

新标题:ADAPT:端到端自动驾驶可解释性的初步探索

需要重写的内容是:原文链接:https://mp.weixin.qq.com/s/MSTyr4ksh0TOqTdQ2WnSeQ

以上就是新标题:ADAPT:端到端自动驾驶可解释性的初步探索的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/483678.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月8日 12:29:29
下一篇 2025年11月8日 12:30:34

相关推荐

  • 推荐有效的工具和技术来进行网站性能优化

    随着互联网的快速发展,越来越多的企业将自己的业务扩展到了网上。然而,随之而来的问题是网站的性能优化。一个高效的网站能够提高用户体验,增加访问量以及销售额。为了达到这些目标,下面将要介绍一些有效的工具和技术来帮助您对网站进行性能优化。 页面压缩:页面压缩是通过减少文件大小来提高页面加载速度的一种方法。…

    2025年12月22日
    200
  • 实现响应式布局的技术和策略

    如何实现响应式布局的技术与方法 引言:随着移动设备的普及和多种终端的涌现,实现响应式布局已成为现代网页开发的重要一环。响应式布局可以使网页在不同的屏幕尺寸下自动适应,提供更好的用户体验。本文将介绍响应式布局的技术与方法,并提供具体的代码示例。 一、媒体查询(Media Queries)媒体查询是实现…

    2025年12月21日
    000
  • 静态重定位技术的原理及其应用案例

    静态重定位技术的原理和应用 引言:在现代计算机系统中,内存管理是一个非常重要的课题。随着软件的复杂性和规模的增加,内存的限制成为了我们面临的一个挑战。为了更高效地利用内存资源,静态重定位技术应运而生。本文将介绍静态重定位技术的原理、应用以及提供一些具体的代码示例。 一、静态重定位技术的原理静态重定位…

    2025年12月21日
    000
  • 分析静态定位技术的优缺点

    静态定位技术的优势与局限性分析 随着现代科技的发展,定位技术已经成为我们生活中不可或缺的一部分。而静态定位技术作为其中的一种,具有其特有的优势和局限性。本文将对静态定位技术进行深入分析,以便更好地了解其应用现状和未来的发展趋势。 首先,我们来看一下静态定位技术的优势所在。静态定位技术是通过对待定位对…

    2025年12月21日
    000
  • 优化网页设计的方法——静态定位的应用技巧

    在现代互联网领域中,网页设计是一个至关重要的领域。深入探究网页设计的方方面面,现代设计师越来越意识到静态定位技术的重要性。静态定位技术可以使得网页设计更灵活,更符合用户的需求,从而大大提高用户对于网页的满意度与使用体验。本文将探究静态定位技术的作用,以及如何在网页设计中去优化与应用静态定位技术。 一…

    2025年12月21日
    000
  • 用Canvas技术打造引人入胜的动态效果,轻松get!

    轻松掌握Canvas技术,打造炫酷动态效果 Canvas是HTML5中一项功能强大的绘图技术,可以实现各种炫酷的动态效果。本文将带你一步步学习Canvas的基本用法,并提供具体的代码示例,让你轻松掌握这项技术。 一、Canvas简介 Canvas是HTML5中的一个元素,用于在网页上绘制图形、动画等…

    2025年12月21日
    000
  • 了解canvas的JS技术:你熟知哪些呢?

    探究canvas的JS技术:你知道有哪些吗? 简介 在现代Web开发中,JavaScript已经成为不可或缺的一部分。作为一种脚本语言,它可以为网页添加交互性和动态性。而在JS技术中,canvas则是一个重要的API之一。本文将带您深入了解canvas的JS技术,并介绍一些常用的canvas相关功能…

    2025年12月21日
    200
  • 再谈前端HTML模板技术

    这篇文章介绍的内容是关于再谈前端HTML模板技术,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下 在web2.0之前,写jsp的时候虽然有es和JSTL,但是还是坚持jsp。后面在外包公司为了快速交货,还是用了php Smart技术。 web2.0后,前端模板技术风行。 代表有如下三大…

    2025年12月21日 好文分享
    000
  • 如何搭建C++自动驾驶环境 Apollo平台配置

    搭建C++自动驾驶环境需先配置Ubuntu系统、Docker及NVIDIA驱动,再克隆Apollo代码并构建Docker镜像,进入容器后用bazel编译,启动Dreamview可视化界面,选择地图与模块运行Demo;常见问题如编译失败可清理缓存或更新依赖,自定义车辆模型和地图需掌握URDF与prot…

    2025年12月18日
    000
  • 如何配置C++的自动驾驶规划环境 Apollo规划模块二次开发

    为什么apollo规划模块的二次开发需要特定的环境配置?apollo使用docker和bazel是为了处理复杂的依赖关系、确保构建一致性、支持gpu加速以及提升团队协作效率。2. 在apollo环境中进行规划模块二次开发的关键步骤包括:准备宿主机环境、克隆apollo仓库、进入docker环境、编译…

    2025年12月18日 好文分享
    000
  • 自动驾驶实时系统:确定性内存分配器开发指南

    自动驾驶实时系统对确定性内存分配器的需求,是为了确保内存操作在可预测时间内完成,从而保障系统的稳定与安全。1. 预分配和内存池通过预先分配固定大小的内存块,实现o(1)时间复杂度的快速分配与释放,但可能导致内存浪费;2. bump allocator使用移动指针的方式实现极快的分配,但通常不支持单独…

    2025年12月18日 好文分享
    000
  • 如何在C++中进行自动驾驶和智能导航开发?

    如何在C++中进行自动驾驶和智能导航开发? 自动驾驶和智能导航是当今科技发展的热门领域之一。随着计算机硬件技术的快速发展和算法的不断完善,C++语言在自动驾驶和智能导航领域的应用越来越广泛。本文将介绍如何在C++中进行自动驾驶和智能导航的开发,并提供代码示例。 传感器数据获取与处理 自动驾驶和智能导…

    2025年12月17日
    000
  • 如何实现C++中的自动驾驶和智能交通系统?

    如何实现C++中的自动驾驶和智能交通系统? 自动驾驶和智能交通系统是目前人工智能领域的热门话题,它们的应用领域涉及到交通运输、安全防护和城市规划等多个方面。本文将探讨如何使用C++编程语言实现自动驾驶和智能交通系统,并提供相关的代码示例。 了解自动驾驶和智能交通系统基本原理自动驾驶系统是指通过计算机…

    2025年12月17日
    100
  • XML数据绑定技术有哪些

    XML数据绑定技术通过将XML与程序对象映射,提升开发效率与代码可读性,主要分为基于XSD生成代码(如JAXB)和基于注解运行时绑定(如Simple XML)两类;选择时需权衡Schema稳定性、性能、开发效率及框架成熟度;相比手动解析,其优势在于类型安全、低维护成本,但面临大文件内存开销与复杂结构…

    2025年12月17日
    000
  • Python开发建议:掌握常用的调试工具和技术

    Python作为一种强大、灵活的编程语言,被广泛应用于各种软件开发领域。然而,许多开发者在学习和使用Python时,往往忽略了调试技术的重要性。调试是软件开发过程中不可或缺的一部分,它可以帮助开发者找到和解决代码中的问题,提高开发效率,保证软件质量。因此,掌握常用的调试工具和技术对于Python开发…

    2025年12月13日
    000
  • Python底层技术揭秘:如何实现图像处理

    Python底层技术揭秘:图像处理的实现及代码示例 导语:图像处理是计算机科学中十分重要的一个领域。通过使用Python以及相关的底层技术,我们能够实现各种各样的图像处理操作。在本文中,我们将揭示Python图像处理的底层技术,并提供一些实用的代码示例。 一、Python图像处理的基础知识在开始探讨…

    2025年12月13日
    000
  • Python底层技术揭秘:如何实现哈希算法

    Python底层技术揭秘:如何实现哈希算法,需要具体代码示例 摘要:哈希算法是计算机领域中常用的技术之一,用于快速确定数据的唯一标识。Python作为一门高级语言,提供了许多内建的哈希函数,如hash()函数以及各种散列算法的实现。本文将揭示哈希算法的原理和Python底层实现的细节,并提供具体的代…

    2025年12月13日
    000
  • 苹果发布 Safari 技术预览版 223:聚焦稳定性与性能优化

    近日,苹果公司推出了 safari 技术预览版的最新版本 223,该版本属于其专为开发者和早期用户打造的实验性浏览器更新。本次更新的重点在于修复已知问题并提升性能表现,目的是为未来正式版 safari 浏览器打下更坚实的基础。 自 2016 年首次发布以来,Safari 技术预览版一直是开发者测试 …

    2025年12月2日
    000
  • 无需电池即可实现「自动驾驶」,华盛顿大学开发出无限续航的机器人

    不装电池,也能%ignore_a_1%的“车”出现了。 甚至还会自动收集能量持续运行,完全没有里程焦虑(手动狗头)。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 不错,这么一个小机器人,其实靠的是光和无线电波供能。其名MilliMobil…

    2025年12月2日 科技
    000
  • BEV下的Radar-Camera 融合跨数据集实验研究

    原标题:cross-dataset experimental study of radar-camera fusion in bird’s-eye view论文链接:https://arxiv.org/pdf/2309.15465.pdf作者单位:opel automobile gmbh rhein…

    2025年12月2日 科技
    000

发表回复

登录后才能评论
关注微信