无需注意力的预训练;被GPT带飞的In-Context Learning

论文 1:ClimateNeRF: Physically-based Neural Rendering for Extreme Climate Synthesis

作者:Yuan Li等论文地址:https://arxiv.org/pdf/2211.13226.pdf

摘要:本文介绍了一种将物理模拟与场景 NeRF 模型相融合的全新方法,生成这些场景中物理现象的逼真影片。就具体效果而言,该方法能够逼真地模拟出气候变化可能产生的影响 —— 在一场小范围的洪水爆发后,操场会变成什么样子?大洪水后呢?暴雪后呢?

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

图片

推荐:一秒起雾、入冬、发洪水,新 NeRF 模型渲染出逼真物理大片。

论文 2:Pretraining Without Attention

作者:Junxiong Wang 等论文地址:https://arxiv.org/pdf/2212.10544.pdf

摘要:本文提出了双向门控 SSM(BiGS)模型,结合基于状态空间模型(SSM)的 Routing 层和基于乘法门的模型架构,在不使用注意力的情况下能够复制 BERT 预训练结果,并可扩展到 4096 个 token 的长程预训练,不需要近似。

图片

推荐:预训练无需注意力,扩展到 4096 个 token 不成问题,与 BERT 相当。

论文 3:One Model to Edit Them All: Free-Form Text-Driven Image Manipulation with Semantic Modulations

作者:Yiming Zhu 等论文地址:https://arxiv.org/pdf/2210.07883.pdf

摘要:最近用文本来引导图像编辑取得了非常大的进展以及关注度,特别是基于去噪扩散模型如 StableDiffusion 或者 DALLE 等。但基于 GAN 的文本 – 图像编辑依旧有一些问题等待解决,例如经典的 StyleCILP 中针对每一个文本必须要训练一个模型,这种单文本对单模型的方式在实际应用中是不方便的。

本文提出 FFCLIP 并解决了这个问题,针对灵活的不同文本输入,FFCLIP 只需要一个模型就能够对图片进行相应的编辑,无需针对每个文本重新训练模型,并且在多个数据集上都取得了非常不错的效果。本文已被 NeurIPS 2022 接收。

推荐:文本图片编辑新范式,单个模型实现多文本引导图像编辑。

论文 4:SELF-INSTRUCT: Aligning Language Model with Self Generated Instructions

作者:Yizhong Wang 等论文地址:https://arxiv.org/pdf/2212.10560v1.pdf

摘要:华盛顿大学等机构近期联合发表了一篇论文,提出的新框架 SELF-INSTRUCT 通过引导模型自己的生成过程,提高了预训练语言模型的指令遵循能力。SELF-INSTRUCT 是一种半自动化过程,使用来自模型本身的指令信号对预训练的 LM 进行指令调整。

推荐:无需人工标注,自生成指令框架打破 ChatGPT 等 LLM 的成本瓶颈。

论文 5:Ab Initio Calculation of Real Solids via Neural Network Ansatz

作者:Xiang Li 等论文地址:https://www.nature.com/articles/s41467-022-35627-1

摘要:机器学习能够处理海量数据,解决复杂场景下的科学难题,带领科学探索抵达过去无法触及的新领域。比如 DeepMind 用人工智能软件 AlphaFold 对科学界已知的几乎所有蛋白质结构进行了高度准确的预测;Christian Lagemann 提出的基于深度学习的粒子图像测速 (PIV) 方法一改原本的纯手动设置参数,大大提升模型的应用范围,对汽车、航空航天和生物医学工程等多个领域的研究具有至关重要的意义。

最近,字节跳动 AI Lab Research 团队和北京大学物理学院陈基课题组的工作《 Ab initio calculation of real solids via neural network ansatz》 给出了研究凝聚态物理的新思路,该工作提出了业内首个适用于固体系统的神经网络波函数,实现了固体的第一性原理计算,并将计算结果推向了热力学极限。其有力地证明了神经网络是研究固体物理的高效工具,也预示着深度学习技术将在凝聚态物理中发挥越来越重要的作用。相关研究成果于 2022 年 12 月 22 日发表于国际顶级刊物 Nature Communication 杂志上。

推荐:业界首个适用于固体系统的神经网络波函数,登上 Nature 子刊。

论文 6:Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta-Optimizers

作者:Damai Dai 等论文地址:https://arxiv.org/pdf/2212.10559v2.pdf

摘要:In-Context Learning(ICL)在大型预训练语言模型上取得了巨大的成功,但其工作机制仍然是一个悬而未决的问题。本文中,来自北大、清华、微软的研究者将 ICL 理解为一种隐式微调,并提供了经验性证据来证明 ICL 和显式微调在多个层面上表现相似。

推荐:被 GPT 带飞的 In-Context Learning 为什么起作用?模型在秘密执行梯度下降。

论文 7:Experimental Indications of Non-classical Brain Functions

作者:Christian Matthias Kerskens 等论文地址:https://iopscience.iop.org/article/10.1088/2399-6528/ac94be

摘要:几十年来,科学家们一直在探索人脑的计算和思考机制。但人脑的构成太过复杂,包含几百亿个神经元,相当于上万亿块芯片,我们很难一探究竟。因对黑洞的研究贡献而获得诺贝尔物理学奖的罗杰・彭罗斯曾大胆地提出「量子意识」观点,即人脑本身就是量子结构,或者说是量子计算机。但这一观点一直备受质疑。

近期都柏林圣三一大学的一项研究表明我们的大脑执行的是量子计算,该研究认为人脑中存在与意识相关的大脑功能介导的纠缠。如果这些大脑功能必须以非经典的方式运作,那么这意味着意识是非经典的,即大脑的认知过程涉及量子计算。

推荐:大脑的思考是量子计算,这一猜测有了新证据。

ArXiv Weekly Radiostation

蚂上有创意 蚂上有创意

支付宝推出的AI创意设计平台,专注于电商行业

蚂上有创意 64 查看详情 蚂上有创意

机器之心联合由楚航、罗若天发起的ArXiv Weekly Radiostation,在 7 Papers 的基础上,精选本周更多重要论文,包括NLP、CV、ML领域各 10 篇精选,并提供音频形式的论文摘要简介,详情如下:

10 NLP Papers音频:00:0020:18

本周 10 篇 NLP 精选论文是:

1. Does unsupervised grammar induction need pixels?.  (from Serge Belongie, Kilian Q. Weinberger, Jitendra Malik, Trevor Darrell)

2. Understanding Stereotypes in Language Models: Towards Robust Measurement and Zero-Shot Debiasing.  (from Bernhard Schölkopf)

3. Tackling Ambiguity with Images: Improved Multimodal Machine Translation and Contrastive Evaluation.  (from Cordelia Schmid, Ivan Laptev)

4. Cross-modal Attention Congruence Regularization for Vision-Language Relation Alignment.  (from Ruslan Salakhutdinov, Louis-Philippe Morency)

5. Original or Translated? On the Use of Parallel Data for Translation Quality Estimation.  (from Dacheng Tao)

6. Toward Human-Like Evaluation for Natural Language Generation with Error Analysis.  (from Dacheng Tao)

7. Can Current Task-oriented Dialogue Models Automate Real-world Scenarios in the Wild?.  (from Kyunghyun Cho)

8. On the Blind Spots of Model-Based Evaluation Metrics for Text Generation.  (from Kyunghyun Cho)

9. Beyond Contrastive Learning: A Variational Generative Model for Multilingual Retrieval.  (from William W. Cohen)

10. The Impact of Symbolic Representations on In-context Learning for Few-shot Reasoning.  (from Li Erran Li, Eric Xing)

10 CV Papers音频:00:0023:15

本周 10 篇 CV 精选论文是:

1. Revisiting Residual Networks for Adversarial Robustness: An Architectural Perspective.  (from Kalyanmoy Deb)

2. Benchmarking Spatial Relationships in Text-to-Image Generation.  (from Eric Horvitz)

3. A Brief Survey on Person Recognition at a Distance.  (from Rama Chellappa)

4. MetaCLUE: Towards Comprehensive Visual Metaphors Research.  (from Leonidas Guibas, William T. Freeman)

5. Aliasing is a Driver of Adversarial Attacks.  (from Antonio Torralba)

6. Reversible Column Networks.  (from Xiangyu Zhang)

7. Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from Sparse Image Ensemble.  (from Ming-Hsuan Yang)

8. Learning Object-level Point Augmentor for Semi-supervised 3D Object Detection.  (from Ming-Hsuan Yang)

9. Unleashing the Power of Visual Prompting At the Pixel Level.  (from Alan Yuille)

10. From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models.  (from Dacheng Tao, Steven C.H. Hoi)

以上就是无需注意力的预训练;被GPT带飞的In-Context Learning的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/559114.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月10日 00:08:49
下一篇 2025年11月10日 00:15:12

相关推荐

  • ai做html怎么运行_AI生成html运行步骤【教程】

    答案是使用AI生成HTML代码后,将其保存为.html文件并用浏览器打开即可运行。具体步骤为:1. 在AI工具中输入需求生成HTML代码;2. 将代码复制到文本编辑器并另存为index.html,编码选UTF-8,类型选“所有文件”;3. 双击该文件用浏览器打开,若无法正常显示需检查文件后缀、编码及…

    2025年12月23日
    000
  • HTML在线运行代码调试工具_推荐HTML在线调试工具使用方法

    如果您希望快速测试和调试HTML代码,但不想配置本地开发环境,使用在线HTML运行工具是一个高效的选择。这些工具允许您实时编写、预览和调试代码。以下是几种推荐的在线调试工具及其使用方法: 一、使用CodePen进行HTML调试 CodePen是一个流行的前端开发环境,支持HTML、CSS和JavaS…

    2025年12月22日
    000
  • html的盒模型详解

    这次给大家带来html的盒模型详解,使用html盒模型的注意事项有哪些,下面就是实战案例,一起来看一下。 1.1. 盒的内容区的尺寸— content width和content height —取决于几个因素: –生成该盒的元素是否设置了’width’或&#82…

    好文分享 2025年12月21日
    000
  • p5.js中类方法声明的语法解析与常见错误修复指南

    本文旨在解决从java processing迁移至p5.js时常见的语法错误,特别是类内部方法声明不当引发的问题。我们将深入探讨javascript中全局函数与类方法声明的语法差异,提供清晰的示例代码,并指导如何识别和修复“unexpected token”及“declaration or stat…

    2025年12月21日
    000
  • p5.js中类方法声明的语法修正与迁移指南

    本文深入探讨了将Processing/Java代码转换为p5.js时,因JavaScript类方法声明语法差异而引发的常见错误。我们将重点解析`Unexpected token`和`Declaration or statement expected`等错误信息,明确全局函数与类成员方法在JavaSc…

    2025年12月21日
    000
  • TypeScript泛型函数中复杂对象结构类型推断的精确控制

    本文探讨了在typescript中处理复杂嵌套对象结构时,如何为泛型函数实现精确的类型推断。通过一个具体的汽车品牌和车型数据场景,我们分析了`object.values`等操作可能导致类型信息丢失的问题。核心解决方案是利用映射类型(mapped types)重构数据结构,以显式地建立泛型键与对应值之…

    2025年12月21日
    000
  • JavaScript GraphQL API设计与优化

    答案:设计高性能JavaScript GraphQL API需遵循Schema设计、Resolver优化、性能监控、安全处理四大原则。1. 合理设计Schema,使用类型化字段、分模块组织、控制嵌套深度;2. 优化Resolver,通过DataLoader解决N+1问题,懒加载关联数据并缓存常用结果…

    2025年12月21日
    000
  • 解决ES6模块在Node.js与浏览器中通用导入的挑战

    本文探讨了在不使用打包工具的情况下,如何实现在node.js和浏览器中并行加载并使用es6模块(如react和htm)的挑战。核心问题在于node.js能够解析`node_modules`中的裸模块说明符,而浏览器则不能。文章将介绍常见的解决方案——模块打包器,并探讨一种替代方案——import m…

    2025年12月21日
    000
  • JavaScript数据库操作与ORM框架

    Node.js中JavaScript可通过原生驱动、查询构建器或ORM操作数据库;ORM如Sequelize、TypeORM、Mongoose和Prisma将数据表映射为对象,提升开发效率并增强安全性,但存在性能开销与学习成本,需根据项目规模选择合适方案。 JavaScript 本身并不直接支持数据…

    2025年12月21日
    000
  • 解决 ChatGPT 扩展选择器失效问题:一个实战教程

    本文旨在帮助开发者解决 ChatGPT 网页更新导致扩展选择器失效的问题。通过分析问题原因,提供利用开发者工具查找新选择器的方法,并展示了使用 getElementsByClassName() 替代 querySelector() 的解决方案,以确保扩展功能在 ChatGPT 最新版本中正常运行。 …

    2025年12月20日
    000
  • ChatGPT 扩展失效:定位新版选择器并修复

    本文旨在帮助开发者解决因 ChatGPT 网页更新导致扩展失效的问题。通过分析失效原因,提供利用开发者工具定位新版选择器的实用方法,并给出示例代码,帮助开发者快速修复扩展,恢复其功能。 当 ChatGPT 网页更新时,依赖于特定 CSS 选择器的扩展程序可能会失效。这通常是因为网页结构的改变导致原有…

    2025年12月20日
    000
  • ChatGPT 扩展失效?定位新版选择器的实用指南

    本文旨在帮助开发者解决因 ChatGPT 网页更新导致扩展失效的问题。重点讲解如何定位新版 ChatGPT 网页中的目标元素,并提供使用 getElementsByClassName() 方法的示例代码,帮助开发者快速修复和更新扩展,使其重新适配新版 ChatGPT 网页。 ChatGPT 网页频繁…

    2025年12月20日
    000
  • ChatGPT 扩展插件选择器失效问题排查与解决方案

    本文旨在帮助开发者解决 ChatGPT 扩展插件因页面更新导致选择器失效的问题。通过分析页面结构变化,提供使用 getElementsByClassName() 方法替代 querySelector() 的解决方案,并提供在不同浏览器环境下调整选择器的思路,确保扩展插件的稳定运行。 由于 ChatG…

    2025年12月20日
    000
  • 应对ChatGPT界面更新:浏览器扩展选择器失效的定位与修复

    本文针对ChatGPT界面更新导致浏览器扩展选择器失效的问题,提供了一套定位与修复策略。核心在于利用浏览器开发者工具识别新的DOM结构和类名,并建议从不稳定的querySelector转向更适合动态UI的getElementsByClassName等方法,以确保扩展的稳定运行。 在开发浏览器扩展时,…

    2025年12月20日
    000
  • LINE Bot 多消息类型回复:文本与贴图的组合发送指南

    本文旨在解决 LINE Bot 开发中,通过 Messaging API 组合发送文本消息和贴图时遇到的 400 Bad Request 错误。核心问题在于对同一 replyToken 进行多次 replyMessage 调用,而正确的做法是利用 API 支持在单次调用中发送一个消息数组,从而实现文…

    2025年12月20日
    000
  • 使用LINE Bot与OpenAI API发送文本和贴图的完整教程

    本文详细介绍了如何在LINE Bot中集成OpenAI API生成文本回复,并在此基础上发送LINE贴图。核心挑战在于LINE Messaging API的replyToken通常只能使用一次,导致连续发送文本和贴图时出现400错误。解决方案是利用API支持一次性发送多条消息的特性,将文本和贴图消息…

    2025年12月20日
    000
  • 优化OpenAI API:解决GPT应用中意外代码生成问题

    本教程旨在解决使用OpenAI GPT-3.5 API(如text-davinci-003)时,模型意外生成无关代码的问题。文章强调了选择更适合代码生成任务的模型(如gpt-3.5-turbo或gpt-4)的重要性,并深入探讨了通过优化提示词(Prompt Engineering)来提升模型响应质量…

    2025年12月20日
    200
  • 解决 Next.js API 路由无法访问 Azure 云函数的问题

    第一段引用上面的摘要: 本文旨在帮助开发者解决 Next.js API 路由无法访问 Microsoft Azure 云函数的问题。主要原因通常是由于 process.env.VERCEL_URL 环境变量配置不正确,导致 Next.js 应用尝试通过 IPv6 的本地回环地址 ::1 连接云函数,…

    2025年12月20日
    000
  • 在Next.js API路由中高效传输OpenAI流式响应到客户端

    本文详细介绍了如何在Next.js应用的API路由中,以流式传输的方式将OpenAI的响应发送给客户端,从而实现类似ChatGPT的实时交互体验。针对旧版Node.js环境限制和API密钥暴露等常见问题,我们提出了一种基于Next.js App Router和Web标准API(如ReadableSt…

    2025年12月20日
    000
  • Node.js ES Modules中openai导入异常及误导性错误排查

    本文探讨了在Node.js ES Modules (ESM) 环境下使用openai npm包时,遇到的一个看似是SyntaxError的模块导入问题。文章详细分析了问题现象,揭示了其背后实则是一个与导入语句无关的运行时逻辑错误,并解释了为何这类深层问题可能导致误导性的编译或模块加载错误。通过代码示…

    2025年12月20日
    000

发表回复

登录后才能评论
关注微信