基于PaddleDetection的智能零售柜商品识别+部署

智能零售结算系统,其目的旨在于利用计算机视觉领域中国的图像识别及目标检测技术,精准地对顾客购买的商品进行智能化、自动化的价格结算。当顾客将自己选购的商品放置在制定区域的时候,一个理想的智能零售结算系统应当能够精准地识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于paddledetection的智能零售柜商品识别+部署 - 创想鸟

基于PaddleDetection的智能零售柜商品识别

一、赛题背景

智能零售结算系统,其目的旨在于利用计算机视觉领域中国的图像识别及目标检测技术,精准地对顾客购买的商品进行智能化、自动化的价格结算。当顾客将自己选购的商品放置在制定区域的时候,一个理想的智能零售结算系统应当能够精准地识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格。

二、赛题任务

通过PaddleDetection实现智能零售结算系统,其目的旨在于利用计算机视觉领域中国的图像识别及目标检测技术,精准地对顾客购买的商品进行智能化、自动化的价格结算。

基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟        

三、数据集介绍

本数据集采用VOC格式,符合大多深度学习开发套件对数据集格式的要求,可满足paddlex或PaddleDetection的训练要求。本数据集总数据量为5422张,且所有图片均已标注,共有113类商品。本数据集以对数据集进行划分,其中训练集3796张、验证集1084张、测试集542张。!基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟        

四、提交实例

参赛者需要将所有模型检测结果放入一个csv文件中,命名为submission.csv,文件内容格式如下表所示: 每一行为一个待检测图像的信息和结果,其中第一列存储待检测的图像名称(不包含后缀名),第二列存储检测的垂直边框信息,具体边框信息格式为[目标矩形中心点相对横坐标 目标矩形中心点相对纵坐标 目标矩形相对长度比例 目标矩形相对宽度比例](数字间用英文空格隔开),如果有多个垂直边框,用英文的“;”将边框信息进行分离。基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟        

五、数据预处理

竞赛训练数据集中包括两类数据文件,第一类是.jpg格式的图像文件,第二类是xml格式的商品标注信息xml文件,两者通过相同的名称进行关联,名称命名规则可忽略。

下载数据集(训练集和测试集) 数据集已制作上传,可以直接引用。

其次解压数据集 执行以下命令解压数据集,解压之后将压缩包删除,保证项目空间小于100G。否则项目会被终止。

In [ ]

# 1.安装依赖%cd work/!git clone https://gitee.com/PaddlePaddle/PaddleDetection.git -b develop%cd PaddleDetection/

   In [ ]

%cd PaddleDetection/!pip install -r requirements.txt# !pip install paddlex

   In [4]

# 2.解压数据集!unzip -oq /home/aistudio/data/data91732/VOC.zip -d /home/aistudio/PaddleDetection/dataset/shoping

   

六、模型训练

1.利用PaddleDetection套件中的faster_rcnn_swin_tiny_fpn_1x_coco模型完成货柜中商品识别任务的训练,首先在https://gitee.com/PaddlePaddle/PaddleDetection.git 里,进行克隆,下载项目。基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟        

2.模型介绍: Faster RCNN其实可以分为4个主要内容:

(1)Conv layers。作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps。该feature maps被共享用于后续RPN层和全连接层。

(2)Region Proposal Networks。RPN网络用于生成region proposals。该层通过softmax判断anchors属于positive或者negative,再利用bounding box regression修正anchors获得精确的proposals。

(3)Roi Pooling。该层收集输入的feature maps和proposals,综合这些信息后提取proposal feature maps,送入后续全连接层判定目标类别。

(4)Classification。利用proposal feature maps计算proposal的类别,同时再次bounding box regression获得检测框最终的精确位置。基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟 上图展示了模型中的faster_rcnn(backbone为vgg16)的网络结构,可以清晰的看到该网络对于一副任意大小PxQ的图像:

首先缩放至固定大小MxN,然后将MxN图像送入网络;而Conv layers中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3×3卷积,再分别生成positive anchors和对应bounding box regression偏移量,然后计算出proposals;而Roi Pooling层则利用proposals从feature maps中提取proposal feature送入后续全连接和softmax网络作classification(即分类proposal到底是什么object)。

在本文中所选用的模型是PaddleDetection套件中的faster_rcnn_swin_tiny_fpn_3x_coco模型,backbone选用了Swin_Transformer,其余结构均与上述相同。引入Swin_transformer的优点主要有:将层次性、局部性和平移不变性等先验引入Transformer网络结构设计。

爱图表 爱图表

AI驱动的智能化图表创作平台

爱图表 305 查看详情 爱图表

核心创新:移位窗口(shifted window)设计:
1)自注意的计算在局部的非重叠窗口内进行。这一设计有两方面的好处,一是复杂度从此前的和图像大小的平方关系变成了线性关系,也使得层次化的整体结构设计、局部先验的引入成为可能,二是因为采用非重叠窗口,自注意计算时不同query会共享同样的key集合,从而对硬件友好,更实用。
2)在前后两层的Transformer模块中,非重叠窗口的配置相比前一层做了半个窗口的移位,这样使得上一层中不同窗口的信息进行了交换。 相比于卷积网络以及先驱的自注意骨干网络(Local Relation Net和SASA)中常见的滑动窗(Sliding window)设计,这一新的设计牺牲了部分平移不变性,但是实验发现平移不变性的部分丢失不会降低准确率,甚至以为正则效应效果更好。同时,这一设计对硬件更友好,从而更实用而有希望成为主流。基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟本文中所选用模型所使用的backbone参数解释:

SwinTransformer:  embed_dim: 96  depths: [2, 2, 6, 2]  num_heads: [3, 6, 12, 24]  window_size: 7    ape: false  drop_path_rate: 0.1  patch_norm: true  out_indices: [0,1,2,3]  pretrained: https://paddledet.bj.bcebos.com/models/pretrained/swin_tiny_patch4_window7_224.pdparams

       patch_size=4对应的是之前在网络结构中Patch Partition之后下采样多少倍;embed_dim=96对应原网络结构中通过Linear Embedding之后得到的C;depths=(2, 2, 6, 2)对应每一个stage中重复Swin Transformer Block的次数;num_heads=(3, 6, 12, 24)对应的是每一个Swin Transformer Block当中所采用的Multi head的head个数;window_sizw=7对应的是W-MSA或SW-MSA中采用window的大小;mlp_ratio=4是在MLP模块中第一个全连接层将我们的channel翻多少倍;qkv_bias=True代表说在multi-self attention中是否使用偏置;第一个drop_rate是接在我们PatchEmbed后面的;第二个attn_drop_rate对应的是在attention中采用的droprate;第三个drop_path_rate对应的是在每一个swin transformer中采用的droprate。

3.利用PaddleDetection套件中的目标检测模型完成货柜中商品识别任务,修改参数以及数据集路径,这里选用配置文件中的configs/faster_rcnn/faster_rcnn_swin_tiny_fpn_1x_coco.yml对数据进行训练。
(1)修改work/PaddleDetection/configs/datasets/voc.yml中的voc数据集所在路径和num_classes。

metric: VOCmap_type: 11pointnum_classes: 113TrainDataset:  !VOCDataSet    dataset_dir: dataset/shoping    anno_path: train_list.txt    label_list: labels.txt    data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']EvalDataset:  !VOCDataSet    dataset_dir: dataset/shoping    anno_path: test_list.txt    label_list: labels.txt    data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']TestDataset:  !ImageFolder    anno_path: dataset/voc/labels.txt

       

(2)修改work/PaddleDetection/configs/faster_rcnn/faster_rcnn_swin_tiny_fpn_1x_coco.yml中数据集格式

_BASE_: [  '../datasets/voc.yml',  '../runtime.yml',  '_base_/optimizer_swin_1x.yml',  '_base_/faster_rcnn_swin_tiny_fpn.yml',  '_base_/faster_rcnn_swin_reader.yml',]weights: output/faster_rcnn_swin_tiny_fpn_1x_coco/model_final

   In [ ]

# 4.选用PaddleDetection中的目标检测模型,修改参数以及数据集路径,这里选用faster_rcnn_swin_tiny_fpn_1x_coco.yml对数据进行训练。%cd ~/PaddleDetection!python  ./tools/train.py -c ./configs/faster_rcnn/faster_rcnn_swin_tiny_fpn_1x_coco.yml --use_vdl True --vdl_log_dir ./log --eval

   

七、模型预测

将预测txt和jpg保存到/home/aistudio/test_a/

In [ ]

# 5.模型预测!python tools/infer.py -c ./configs/faster_rcnn/faster_rcnn_swin_tiny_fpn_1x_coco.yml --infer_dir=/home/aistudio/work/PaddleDetection/dataset/shoping/JPEGImages/ --save_txt=True --output_dir=/home/aistudio/work/PaddleDetection/output_img/

   

八、模型【评估】

使用训练好的模型在验证集上进行评估,具体代码如下:

In [ ]

# 评估!export CUDA_VISIBLE_DEVICES=0'''    -c:指定模型配置文件    -o weights:加载训练好的模型'''!python tools/eval.py -c configs/faster_rcnn/faster_rcnn_swin_tiny_fpn_1x_coco.yml               -o weights=output/faster_rcnn_swin_tiny_fpn_1x_coco/best_model.pdparams

   

九、模型调优

预训练模型:使用预训练模型可以有效提升模型精度,faster_rcnn_swin_tiny_fpn_1x_coco.yml模型提供了在COCO数据集上的预训练模型修改loss:将目标检测中的GIOU loss改为DIOU loss修改lr:调整学习率,这里将学习率调小一半修改lr再训练:当模型不再提升,可以加载训练好的模型,把学习率调整为十分之一,再训练。

十、模型导出

在模型训练过程中保存的模型文件是包含前向预测和反向传播的过程,在实际的工业部署则不需要反向传播,因此需要将模型进行导成部署需要的模型格式。 执行下面命令,即可导出模型。

In [ ]

!export CUDA_VISIBLE_DEVICES=0!python tools/export_model.py       -c configs/faster_rcnn/faster_rcnn_swin_tiny_fpn_1x_coco.yml       -o weights=output/faster_rcnn_swin_tiny_fpn_1x_coco/best_model.pdparams       --output_dir=inference_model

   

十一、模型推理

在终端输入以下命令进行预测,详细教程请参考Python端预测部署:

In [ ]

!export CUDA_VISIBLE_DEVICES=0'''    --model_dir: 上述导出的模型路径    --image_file:需要测试的图片    --image_dir:也可以指定要测试的文件夹路径    --device:运行时的设备,可选择CPU/GPU/XPU,默认为CPU    --output_dir:可视化结果保存的根目录,默认为output/'''!python deploy/python/infer.py         --model_dir=./inference_model/faster_rcnn_swin_tiny_fpn_1x_coco         --image_file=/home/aistudio/PaddleDetection/dataset/shoping/JPEGImages/ori_XYGOC2021042116153323901IK-3_0.jpg         --device=GPU

   

预测模型会导出到inference_model/目录下,包括model.pdmodel、model.pdiparams、model.pdiparams.info和infer_cfg.yml四个文件,分别表示模型的网络结构、模型权重、模型权重名称和模型的配置文件(包括数据预处理参数等)的流程配置文件。

使用用全量数据集上训练的模型,在包含542张图片的验证集上评估,效果如下,mAP(0.5)=99.29%:

十二、数据可视化基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟        

基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟 训练20轮检测效果如下图所示:基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟基于PaddleDetection的智能零售柜商品识别+部署 - 创想鸟        

以上就是基于PaddleDetection的智能零售柜商品识别+部署的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/744348.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月25日 16:50:26
下一篇 2025年11月25日 16:51:32

相关推荐

  • Uniapp 中如何不拉伸不裁剪地展示图片?

    灵活展示图片:如何不拉伸不裁剪 在界面设计中,常常需要以原尺寸展示用户上传的图片。本文将介绍一种在 uniapp 框架中实现该功能的简单方法。 对于不同尺寸的图片,可以采用以下处理方式: 极端宽高比:撑满屏幕宽度或高度,再等比缩放居中。非极端宽高比:居中显示,若能撑满则撑满。 然而,如果需要不拉伸不…

    2025年12月24日
    400
  • 如何让小说网站控制台显示乱码,同时网页内容正常显示?

    如何在不影响用户界面的情况下实现控制台乱码? 当在小说网站上下载小说时,大家可能会遇到一个问题:网站上的文本在网页内正常显示,但是在控制台中却是乱码。如何实现此类操作,从而在不影响用户界面(UI)的情况下保持控制台乱码呢? 答案在于使用自定义字体。网站可以通过在服务器端配置自定义字体,并通过在客户端…

    2025年12月24日
    800
  • 如何在地图上轻松创建气泡信息框?

    地图上气泡信息框的巧妙生成 地图上气泡信息框是一种常用的交互功能,它简便易用,能够为用户提供额外信息。本文将探讨如何借助地图库的功能轻松创建这一功能。 利用地图库的原生功能 大多数地图库,如高德地图,都提供了现成的信息窗体和右键菜单功能。这些功能可以通过以下途径实现: 高德地图 JS API 参考文…

    2025年12月24日
    400
  • 如何使用 scroll-behavior 属性实现元素scrollLeft变化时的平滑动画?

    如何实现元素scrollleft变化时的平滑动画效果? 在许多网页应用中,滚动容器的水平滚动条(scrollleft)需要频繁使用。为了让滚动动作更加自然,你希望给scrollleft的变化添加动画效果。 解决方案:scroll-behavior 属性 要实现scrollleft变化时的平滑动画效果…

    2025年12月24日
    000
  • 如何为滚动元素添加平滑过渡,使滚动条滑动时更自然流畅?

    给滚动元素平滑过渡 如何在滚动条属性(scrollleft)发生改变时为元素添加平滑的过渡效果? 解决方案:scroll-behavior 属性 为滚动容器设置 scroll-behavior 属性可以实现平滑滚动。 html 代码: click the button to slide right!…

    2025年12月24日
    500
  • 如何选择元素个数不固定的指定类名子元素?

    灵活选择元素个数不固定的指定类名子元素 在网页布局中,有时需要选择特定类名的子元素,但这些元素的数量并不固定。例如,下面这段 html 代码中,activebar 和 item 元素的数量均不固定: *n *n 如果需要选择第一个 item元素,可以使用 css 选择器 :nth-child()。该…

    2025年12月24日
    200
  • 使用 SVG 如何实现自定义宽度、间距和半径的虚线边框?

    使用 svg 实现自定义虚线边框 如何实现一个具有自定义宽度、间距和半径的虚线边框是一个常见的前端开发问题。传统的解决方案通常涉及使用 border-image 引入切片图片,但是这种方法存在引入外部资源、性能低下的缺点。 为了避免上述问题,可以使用 svg(可缩放矢量图形)来创建纯代码实现。一种方…

    2025年12月24日
    100
  • 如何解决本地图片在使用 mask JS 库时出现的跨域错误?

    如何跨越localhost使用本地图片? 问题: 在本地使用mask js库时,引入本地图片会报跨域错误。 解决方案: 要解决此问题,需要使用本地服务器启动文件,以http或https协议访问图片,而不是使用file://协议。例如: python -m http.server 8000 然后,可以…

    2025年12月24日
    200
  • 如何让“元素跟随文本高度,而不是撑高父容器?

    如何让 元素跟随文本高度,而不是撑高父容器 在页面布局中,经常遇到父容器高度被子元素撑开的问题。在图例所示的案例中,父容器被较高的图片撑开,而文本的高度没有被考虑。本问答将提供纯css解决方案,让图片跟随文本高度,确保父容器的高度不会被图片影响。 解决方法 为了解决这个问题,需要将图片从文档流中脱离…

    2025年12月24日
    000
  • 为什么 CSS mask 属性未请求指定图片?

    解决 css mask 属性未请求图片的问题 在使用 css mask 属性时,指定了图片地址,但网络面板显示未请求获取该图片,这可能是由于浏览器兼容性问题造成的。 问题 如下代码所示: 立即学习“前端免费学习笔记(深入)”; icon [data-icon=”cloud”] { –icon-cl…

    2025年12月24日
    200
  • 如何利用 CSS 选中激活标签并影响相邻元素的样式?

    如何利用 css 选中激活标签并影响相邻元素? 为了实现激活标签影响相邻元素的样式需求,可以通过 :has 选择器来实现。以下是如何具体操作: 对于激活标签相邻后的元素,可以在 css 中使用以下代码进行设置: li:has(+li.active) { border-radius: 0 0 10px…

    2025年12月24日
    100
  • 如何模拟Windows 10 设置界面中的鼠标悬浮放大效果?

    win10设置界面的鼠标移动显示周边的样式(探照灯效果)的实现方式 在windows设置界面的鼠标悬浮效果中,光标周围会显示一个放大区域。在前端开发中,可以通过多种方式实现类似的效果。 使用css 使用css的transform和box-shadow属性。通过将transform: scale(1.…

    2025年12月24日
    200
  • 为什么我的 Safari 自定义样式表在百度页面上失效了?

    为什么在 Safari 中自定义样式表未能正常工作? 在 Safari 的偏好设置中设置自定义样式表后,您对其进行测试却发现效果不同。在您自己的网页中,样式有效,而在百度页面中却失效。 造成这种情况的原因是,第一个访问的项目使用了文件协议,可以访问本地目录中的图片文件。而第二个访问的百度使用了 ht…

    2025年12月24日
    000
  • 如何用前端实现 Windows 10 设置界面的鼠标移动探照灯效果?

    如何在前端实现 Windows 10 设置界面中的鼠标移动探照灯效果 想要在前端开发中实现 Windows 10 设置界面中类似的鼠标移动探照灯效果,可以通过以下途径: CSS 解决方案 DEMO 1: Windows 10 网格悬停效果:https://codepen.io/tr4553r7/pe…

    2025年12月24日
    000
  • 使用CSS mask属性指定图片URL时,为什么浏览器无法加载图片?

    css mask属性未能加载图片的解决方法 使用css mask属性指定图片url时,如示例中所示: mask: url(“https://api.iconify.design/mdi:apple-icloud.svg”) center / contain no-repeat; 但是,在网络面板中却…

    2025年12月24日
    000
  • 如何用CSS Paint API为网页元素添加时尚的斑马线边框?

    为元素添加时尚的斑马线边框 在网页设计中,有时我们需要添加时尚的边框来提升元素的视觉效果。其中,斑马线边框是一种既醒目又别致的设计元素。 实现斜向斑马线边框 要实现斜向斑马线间隔圆环,我们可以使用css paint api。该api提供了强大的功能,可以让我们在元素上绘制复杂的图形。 立即学习“前端…

    2025年12月24日
    000
  • 图片如何不撑高父容器?

    如何让图片不撑高父容器? 当父容器包含不同高度的子元素时,父容器的高度通常会被最高元素撑开。如果你希望父容器的高度由文本内容撑开,避免图片对其产生影响,可以通过以下 css 解决方法: 绝对定位元素: .child-image { position: absolute; top: 0; left: …

    2025年12月24日
    000
  • 使用 Mask 导入本地图片时,如何解决跨域问题?

    跨域疑难:如何解决 mask 引入本地图片产生的跨域问题? 在使用 mask 导入本地图片时,你可能会遇到令人沮丧的跨域错误。为什么会出现跨域问题呢?让我们深入了解一下: mask 框架假设你以 http(s) 协议加载你的 html 文件,而当使用 file:// 协议打开本地文件时,就会产生跨域…

    2025年12月24日
    200
  • CSS 帮助

    我正在尝试将文本附加到棕色框的左侧。我不能。我不知道代码有什么问题。请帮助我。 css .hero { position: relative; bottom: 80px; display: flex; justify-content: left; align-items: start; color:…

    2025年12月24日 好文分享
    200
  • HTML、CSS 和 JavaScript 中的简单侧边栏菜单

    构建一个简单的侧边栏菜单是一个很好的主意,它可以为您的网站添加有价值的功能和令人惊叹的外观。 侧边栏菜单对于客户找到不同项目的方式很有用,而不会让他们觉得自己有太多选择,从而创造了简单性和秩序。 今天,我将分享一个简单的 HTML、CSS 和 JavaScript 源代码来创建一个简单的侧边栏菜单。…

    2025年12月24日
    200

发表回复

登录后才能评论
关注微信