快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登nature子刊

编辑 | KX

两年前,清华大学物理系徐勇、段文晖研究组开发出高效精确的第一性原理电子结构深度学习方法 DeePH,可极大加速电子结构计算。

近日,该团队开发了一种准确而有效的实空间重构方法(real-space reconstruction),将 DeepH 方法从原先仅支持原子基组推广至适用于平面波基组,使得 DeepH 方法可与所有密度泛函理论(DFT)程序兼容。而且,该重构方法比传统的基于投影的方法快几个数量级。

这给深度学习电子结构计算方法带来了更高的精度和更好的泛化能力,并打通了其利用电子结构大数据作深度学习的通道。

相关研究以「Generalizing deep learning electronic structure calculation to the plane-wave basis」为题,于 10 月 3 日发布在《Nature Computational Science》上。

快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊

论文链接:https://www.nature.com/articles/s43588-024-00701-9

DeepH 成功与局限性

近年来,从头计算与 AI 相结合取得了显著进展。这大大扩展了理论和计算材料研究的范围,达到了前所未有的精度和效率。

深度学习方法 DeepH 取得了巨大的成功,在比传统 DFT 方法快多个数量级的速度下仍能保持亚毫电子伏的精度。

然而,此类方法只支持局域原子轨道 (AO) 基组下的 DFT 程序,而完全不兼容使用平面波 (PW)基组的 DFT 程序。事实上,平面波基组相对原子轨道基组有其独特的优势,如容易收敛、精度高、应用更广泛等,因此将 DeepH 方法推广至平面波基组对深度学习电子结构计算的未来发展具有重要的意义。

比传统方法快几个数量级

为了解决以上问题,清华研究团队提出了一种基于 PW DFT 结果的实空间重构方法来重构 AO 哈密顿量。该方法比直接投影 PW 哈密顿量或波函数的传统方法快几个数量级。

此外,研究表明,使用该方法生成的 AO 哈密顿量不仅可以很好地再现 PW 电子结构,而且非常容易被神经网络模型学习。因此,解决了 PW 基下的深度学习 DFT 哈密顿量的关键问题。新方法的高精度和高效性有利于构建更通用、更准确的深度学习电子结构计算方法,这不仅使它们能够为更广泛的科学界所使用,而且极大地提高了它们在一般应用中的适用性。

快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊

图 1:PW 基下的深度学习 DFT 哈密顿量的思想及其在旋转双层石墨烯中的应用。(来源:论文)

将 PW 汉密尔顿量转换为 AO 基组的三种方法

该方法的实际工作流程为:一组小型非扭曲结构的 PW DFT 结果用于在 AO 基下重构汉密尔顿量。然后可以推广在这些重构汉密尔顿量上训练的神经网络来预测大型扭曲结构的汉密尔顿量。

PW 汉密尔顿量和 AO 汉密尔顿量实际上是在不同基组下表达的相同物理量。原则上,一旦有了 PW 汉密尔顿量快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊,就可以通过改变基组来获得相应的 AO 汉密尔顿量 快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊,然后当前的 AO 汉密尔顿量神经网络可以灵活地学习该 AO 汉密尔顿量。

在此,研究人员简要讨论了将 PW 汉密尔顿量转换为 AO 基组的三种方法。

投影(projectio)方法被广泛用于弥合 PW 和 AO 之间的差距。其最初是为了评估 AO 基组的质量而开发的,投影方法可以修改为直接将哈密顿量从 PW 基转换为 AO 基:

快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊

这里,PW 基在 Born–von Kármán (BvK) 超晶胞中被归一化:快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊,其中,k 是第一布里渊区中的波矢,G 是倒格矢,N 是形成 BvK 超晶胞的原始晶胞数,Ω 是原始晶胞的体积。AO 基函数 |ϕiα〉 以原子 i 为中心。可能有多个基函数(标记为 n)共享相同的角动量量子数 l 和磁量子数 m。指标 α 是 n、l、m 的缩写。

方程 (1) 被称为 Hk(G, G′) 投影法

如果得到了 PW 哈密顿量的特征值 εnk 和波函数 |ψnk〉,则方程 (1) 可以进一步写成:

百度·度咔剪辑 百度·度咔剪辑

度咔剪辑,百度旗下独立视频剪辑App

百度·度咔剪辑 3 查看详情 百度·度咔剪辑

快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊

方程 (2) 被称为 ψnk(G) 投影法。

虽然方程 (1) 和 (2) 是将 PW 哈密顿量转换为 AO 基的直接方法,但它们的计算效率较低。此外,它们都相对于系统中的原子数量以立方比例缩放,这限制了它们的应用范围。

事实上,可以利用实空间中的局部性来大大加快计算速度。原子单位下的实空间中的哈密顿量为:

快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊

其中,各个项分别对应于动能、Hartree 势、交换关联势以及伪势的局部和非局部部分。本研究仅考虑交换和关联的半局部函数。方括号中的三个项称为总有效局部势:快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊,它在单位晶胞上是周期性的。一旦有了 H(r, r′),就可以直接在实空间中计算 AO 哈密顿量,如下所示:

快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊

该方法称为实空间重构方法。

尽管它们在理论上是等效的,并且在收敛时会产生相同的结果,但所提出的实空间重构方法比前两种基于投影的方法效率高得多。

两个研究案例

应用于扭曲双层石墨烯

深度学习 DFT 汉密尔顿量方法最显著的能力是神经网络模型可以在小结构上进行训练,并推广到预测更大结构的汉密尔顿量。

在双层石墨烯的研究中,训练集由 300 个 4 × 4 双层石墨烯超晶胞组成,这些超晶胞具有不同的堆叠和每个原子位置的随机扰动。研究人员在根据 PW DFT 结果重建的 AO 汉密尔顿量训练神经网络模型后,可以使用该模型系统地研究具有任意扭曲角度的莫尔扭曲超结构。

首先,在训练集的一个结构上对重建的哈密顿量进行基准测试,将其能带结构与使用 PW 计算的能带结构绘制在一起。如图 1c 所示,两个能带结构非常吻合。

在训练神经网络模型后,用它来研究众所周知的「魔角」扭曲双层石墨烯,θ = 1.08°,莫尔超晶胞中有 11,164 个原子。有了深度学习 DFT 哈密顿量方法,计算成本可以大大降低。如图 1d 所示,与 PW DFT 基准相比,在重建的 AO 哈密顿量上训练的神经网络能够给出非常准确的预测,误差仅为几毫电子伏。

此外,当使用从 PW DFT 输出重建的 AO 汉密尔顿量训练神经网络时,预测的能带结构(图 1d 中的 PW-NN)与 Lucignano 等人的 PW DFT 结果相比,与使用 AO DFT 计算的汉密尔顿量(图 1d 中的 AO-NN)训练神经网络的情况相比,具有更好的一致性。

这表明与 PW DFT 接口的深度学习汉密尔顿量确实可以给出更高精度的结果。这种高精度与 PW 方法的灵活性和广泛适用性相结合,将大大增强深度学习从头计算的能力,并将对未来的研究大有裨益。

应用于双层 MoS2

接下来,在双层 MoS2 系统研究中比较了三种方法。首先,研究人员在由六个原子组成的 AB 堆叠双层晶胞上测试了重构方法,从重构的 AO 哈密顿量获得的能带结构与 PW DFT 结果非常吻合。然后,绘制了三种不同方法给出的能带结构,它们几乎相同,只是 ψnk(G) 投影方法给出的能带结构与其他两种方法略有不同,因为在方程 (2) 时仅使用了有限数量的能带。

快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊

图 2:应用 PW 基下的深度学习 DFT 哈密顿量研究扭曲双层 MoS2。(来源:论文)

然后,进一步比较了三种方法的计算时间。正如预期的那样,两种基于投影的方法显示出大致的立方缩放。它们甚至比完全自洽场计算更耗时。相反,由于 AO 基的局部性,实空间重建方法实现了线性缩放,并且可以比投影方法快几个数量级。

研究人员表示:「我们工作的一个直接影响是,使深度学习电子结构方法适用于那些已经熟悉 PW 方法但在 AO DFT 方面经验较少的人。另一个有前途的未来应用是,建立通用的深度学习模型,可以处理不同类型的材料并准确预测它们的电子结构。」

以上就是快多个数量级,清华更高精度、更泛化的深度学习电子结构计算方法登Nature子刊的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/416913.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月7日 01:40:47
下一篇 2025年11月7日 01:43:07

相关推荐

  • html官方资源入口_html网站免费设计导航

    html网站免费设计导航入口是https://www.htmldesignresources.com,该平台提供HTML模板、响应式示例、表单组件和CSS样式资源,支持预览、搜索、筛选与代码复制,并设有社区投稿、论坛交流及季度报告更新功能。 html网站免费设计导航入口在哪里?这是不少网页设计爱好者…

    2025年12月23日
    000
  • HTML数据怎样进行情感分析 HTML数据情感挖掘的实现路径

    答案是:从HTML中提取有效文本并进行情感分析需先清理标签获取正文,再经文本预处理、分词与去噪后,应用词典、机器学习或深度学习模型判断情感倾向,最终整合结果并可视化,实现舆情监控与评价分析。 对HTML数据进行情感分析,核心在于从网页内容中提取有效文本,并在此基础上应用自然语言处理技术判断情感倾向。…

    2025年12月23日
    000
  • HTML5 section怎么用_HTML5内容分区标签应用场景说明

    在HTML5中,标签用于定义文档中具有明确主题的独立内容区块,需包含标题以体现其结构性与语义性,常用于文章章节、产品模块等场景,区别于无语义的和可独立分发的。 在HTML5中,section 标签用于定义文档中的一个独立内容区块。它不是简单的容器,而是有语义的结构化标签,表示文档中一个主题性的分区,…

    2025年12月23日
    000
  • htm算法 前景如何_分析HTM算法应用前景

    HTM算法在实时异常检测、预测性维护等时序数据场景中具备应用价值,其无需大量标注数据的特性适合工业监控、网络安防等领域;但受限于生态薄弱、性能不及主流模型及工程实现难度,短期内难以成为主流,更可能作为边缘计算或AI系统补充技术,在特定专业领域持续发展。 HTM(Hierarchical Tempor…

    2025年12月23日
    000
  • html的基础 理论

    本篇文章给大家分享的是关于html基础 理论知识,内容很不错,有感兴趣的朋友可以看一下 HTML 语义化 HTML标签的语义化是指:通过使用包含语义的标签(如h1-h6)恰当地表示文档结构 css命名的语义化是指:为html标签添加有意义的class 为什么需要语义化: 立即学习“前端免费学习笔记(…

    好文分享 2025年12月21日
    000
  • JavaScript数学计算与数值分析库

    math.js适合日常复杂计算,numeric.js专精数值分析,simple-statistics用于统计分析,TensorFlow.js适用于AI与大规模数值运算。 JavaScript虽然原生支持基本的数学运算,但在处理复杂数学计算、数值分析或科学计算时,依赖第三方库能大幅提升开发效率和计算精…

    2025年12月21日
    000
  • 构建基于Vuetify的所见即所得(WYSIWYG)编辑器

    本文探讨了如何利用vuetify的现有组件快速构建一个功能性的所见即所得(wysiwyg)编辑器。我们将重点介绍v-textarea作为内容输入区,以及v-btn-toggle和v-btn作为格式化工具栏的实现方式,并提供示例代码以帮助开发者理解其核心逻辑。同时,文章也提及了脱离框架,从零开始构建w…

    2025年12月21日
    000
  • 浏览器端基于face-api.js的多人脸识别系统构建与优化

    本教程详细探讨了在浏览器中使用face-api.js构建多人脸识别系统时,如何解决人脸误识别的问题。核心在于正确地为每个用户生成独立的标签化人脸描述符(labeledfacedescriptors),并利用facematcher进行高效准确的匹配。文章提供了完整的svelte代码示例,涵盖模型加载、…

    2025年12月20日
    000
  • LangChain HNSWLib 向量存储机制与数据持久化指南

    本文详细解析langchain中hnswlib向量存储的工作原理,明确其作为内存存储的特性,指出数据实际存储在项目部署的服务器上,而非langchain官方服务器。同时,文章将指导如何通过save_local()方法将内存中的向量数据持久化到本地文件,确保数据安全与可靠性,并探讨在实际应用中的注意事…

    2025年12月20日
    000
  • 如何利用 JavaScript 实现一个简单的机器学习模型进行预测或分类?

    答案是JavaScript可实现简单机器学习模型。通过手动实现线性回归和kNN算法,可在前端完成基础预测与分类任务;结合TensorFlow.js则能训练神经网络,支持更复杂场景,适合轻量级应用开发。 用 JavaScript 实现一个简单的机器学习模型是完全可行的,尤其适合初学者理解基本原理或在前…

    2025年12月20日
    000
  • 如何用JavaScript进行计算机视觉的基本处理?

    JavaScript通过Canvas API和图像数据操作可实现基础计算机视觉功能,如灰度化、边缘检测和人脸识别;利用tracking.js、ml5.js等库能简化开发,结合getUserMedia()还可处理实时视频流,适用于Web端轻量级视觉应用。 用JavaScript进行计算机视觉的基本处理…

    2025年12月20日
    000
  • 如何从零开始构建一个属于自己的前端框架?

    答案是:从零构建%ignore_a_1%框架需先明确核心目标,如组件化、响应式、虚拟DOM等,建议从最小功能出发,逐步实现组件系统、数据响应、虚拟DOM diff、声明式API等关键机制,通过实践深入理解React、Vue等框架的底层原理。 从零开始构建一个前端框架听起来很复杂,但只要拆解清楚目标和…

    2025年12月20日
    000
  • JavaScript 字符串部分模糊匹配:一种实用方法

    本文探讨了在 JavaScript 中进行字符串部分模糊匹配的方法,重点解决当待比较字符串长度差异较大时,传统字符串相似度算法表现不佳的问题。文章提供了一种基于单词匹配的简单而有效的解决方案,并附带示例代码,帮助开发者快速实现字符串的相似度比较。 在 JavaScript 中,我们经常需要比较两个字…

    2025年12月20日
    100
  • 如何用WebGPU实现深度学习模型的推理加速?

    WebGPU在深度学习推理中的核心优势体现在性能提升、跨平台支持和隐私保护。它通过更底层的硬件访问能力,利用GPU并行计算显著加速模型推理,相比WebGL减少了CPU与GPU间的数据传输开销;其原生浏览器支持实现了多平台兼容,使AI计算可在用户端完成,保障数据隐私并降低服务器成本。 WebGPU的出…

    2025年12月20日
    000
  • c++如何使用TensorRT进行模型部署优化_c++ NVIDIA推理引擎入门【AI】

    TensorRT是NVIDIA提供的高性能深度学习推理优化库,专为C++设计,通过序列化→优化→部署流程加速已训练模型在GPU上的推理。 TensorRT 是 NVIDIA 提供的高性能深度学习推理(Inference)优化库,专为 C++ 环境设计,能显著提升模型在 GPU 上的运行速度、降低延迟…

    2025年12月19日
    000
  • c++如何使用C++ AMP或CUDA进行GPU编程_c++异构计算入门

    C++中GPU编程主要通过CUDA和C++ AMP实现。1. CUDA由NVIDIA推出,需使用nvcc编译器,在.cu文件中编写kernel函数,通过cudaMalloc分配显存,cudaMemcpy传输数据,配置grid和block启动并行计算。2. C++ AMP是微软提供的库,基于Direc…

    2025年12月19日
    000
  • c++怎么为TensorFlow编写一个自定义的C++ Op_C++深度学习扩展与TensorFlow自定义操作

    自定义Op需注册接口、实现Kernel并编译加载。1. REGISTER_OP定义输入输出及形状;2. 继承OpKernel重写Compute实现计算逻辑;3. 用Bazel构建so文件,Python中tf.load_op_library加载;4. 注意形状推断、内存安全与设备匹配,LOG辅助调试。…

    2025年12月19日
    000
  • c++怎么用libtorch加载一个PyTorch模型_C++深度学习模型加载与libtorch实践

    首先需将PyTorch模型转为TorchScript格式,再通过LibTorch在C++中加载并推理。具体步骤包括:使用torch.jit.trace或torch.jit.script导出模型为.pt文件;配置LibTorch开发环境,包含下载库、设置CMake并链接依赖;在C++中调用torch:…

    2025年12月19日 好文分享
    000
  • 怎样在C++中实现神经网络_深度学习基础实现

    在c++++中实现神经网络的关键在于选择合适的库、定义神经元和层、实现激活函数、前向传播、反向传播,并选择优化算法。1. 选择合适的库,如eigen进行矩阵运算;2. 定义神经元和层类以实现前向传播;3. 实现sigmoid、relu等激活函数;4. 实现前向传播计算输出;5. 实现反向传播用于训练…

    2025年12月18日 好文分享
    000
  • C语言算法:深度学习与算法应用

    摘要:本教程介绍了 c 语言中的深度学习算法及其应用。基本算法包括:线性回归:训练模型并最小化误差。逻辑回归:计算逻辑函数和训练模型。决策树:创建节点并训练树模型。实战案例:图像分类:读入图像数据。训练卷积神经网络。根据预测模型进行图像分类。 C 语言算法:深度学习与算法应用 引言 深度学习是机器学…

    2025年12月18日
    000

发表回复

登录后才能评论
关注微信