智能驾驶发展的关键技术要素概述

01 融合定位:面向未来的智能驾驶关键设计要素

智能驾驶大时代,汽车变革新未来。汽车软硬件以及内部架构、行业竞争 格局、产业链价值分配也将发生深远变化。在此变革浪潮下,我们认为智 能驾驶将相继历经辅助驾驶利用率提升、自动驾驶方案成熟、自动驾驶生 态完善三个阶段,并分别带来硬件、软件系统和商业化运营三波机会。

其中,高精地图(HD Map=high definition map )作为其导航和定位的关键因素,也将发生重大的设计变革。这主要体现在如下几个重要的方面:

高精地图与导航地图

导航地图提供的是一段车道的长度和相关路程的大概路况。而高精地图提供的是非常详细的道路情况。比如路标,倾斜度,车道线还有车道线所处的位置。这些都会在高精地图上标记。高精地图中连某个交通灯的位置都有高精度的GPS数据标注。所以在无人车在道路上行驶的时候只要有全局路径规划中做出来的路径,再把这些路径转换为每个车道线级别的路径的时候,无人车就可以根据高清地图上标记的每个车道线的中心线行驶。

高精地图与其他模块的联系

高精地图和无人车的其他模块都有联系,定位,预测,感知,规划,安全,仿真,控制,人机交互,这些都需要高精地图帮助。有的模块倒不是说没有高精的图就不可以实现这些功能而是有了高精地图的帮助他们可以获得更准确的信息同时也能做出更加适合当时路况的决策。这里不对更详细的技术东西进行阐述, 只是对他们大体的思路进行一个解释

高精地图和定位

高精地图在定位的主要作用就是,它为定位提供了已经确定好的静态物体的信息。那么无人车就可以根据这些静态物体的信息,反过来找到自己在整个地图中的相对位置。如果这些静态物体有自己本身标注好的高精度的经纬坐标的时候,无人车就可以根据这些经纬度坐标来反向求自身的经纬度坐标,从而实现基于高精地图和激光雷达摄像机等传感器融合的定位方法。通过这种方式就可以摆脱依赖GPS的数据。因为GPS的数据在有数据阻挡的情况下他的噪音是非常强的。当然现在这个阶段基于雷达跟视觉的传感器融合的定位方法的精度没有差分GPS提供的数据准确,但是也不失为一种定位方法。毕竟在没有GPS信号的时候,车辆不可能是在没有自身定位信息的情况下行驶, 这时候只能依赖其他的定位方式。

高精地图和决策

那高精地图跟决策模块的关系就更简单了。因为车辆如果知道以后自己要走的路线和自己要走的路线相关的路标交通灯道路信息,那么决策模块就可以做出更加匹配当时路况的决策。就相当于我们如果知道未来会有什么事情的时候,就可以及时调整现在的行为以应对未来会发生的情况。

高精地图和仿真模块

高清地图和仿真模块的关系就比较好理解因为我们只要在有高精地图标准的地图上,对车辆进行定位或者是其他算法的验证的话,那么在实际应用当中车辆获取的信息跟我们在仿真中获取的信息是一样的。也就是说我们在仿真环境中搭建的代码,很大程度上在现实环境中也可以使用。

高精地图和感知模块

无人驾驶当中感知模块是一个比较复杂的模块。因为它涉及到很多很多现实中的问题。但实际上我们感知的大部分环境里很多东西都是静态的。那么在这种静态的环境中我们不需要用额外的计算能力去计算可以事先存在数据库中的东西。就比如某一个大楼他在某一个位置那么不管车辆行驶到这个位置多少次,每次看到的大楼都是在那一个点上。不管感知方式是什么这大楼的位置都不会随着车辆的感知发生变化。那么这种东西就可以由高精地图采集车先采集它的具体位置,然后把这些数据存到无人车的本地硬盘上。那么无人车就可以根据这个数据库,每次行驶到那个大楼面前的时候,不经过识别就知道那边有一个建筑物。跟定位模块一样,如果我们知道这个建筑物的高精度坐标的时候,我们可以根据这个坐标反求自身所在的位置。而且也可以根据事先做好的大楼的形态还有它的物理特征, 集中计算能力去识别除了这个大楼以外的动态的物体。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

智能驾驶发展的关键技术要素

高清地图和控制模块

控制的具体内容很多详细的内容,我也不是很清楚。但是如果是为了控制转向角的话,那么高精地图所提供的车道线的中间线的数据是必不可少的。因为虽然会基于摄像头来识别车道线,然后根据这个车道线来识别中心线的位置。但是这些东西还是没有高精地图提供的数据准确。毕竟基于摄像头的车道线识别都是实时的, 肯定会偶尔出错 。或者车道线因为长时间没有维护而变得看不清的时候,那么摄像机就不能识别到相应的车道线信息,这时候就需要高精地图。车道线是人驾驶中非常重要的一个数据,所以现阶段的基于摄像机的自动驾驶只能在高速公路上实现。因为只有高速公路上的车道线的保养状态比较好。可以比较容易被识别出来。相反,在城市环境中的车道线维护的就不是很好。所以在城市道路当中基于摄像头的自动驾驶方式暂时还不可取。

高精地图的制作工艺

这边说实话我也没有涉及过但是听老师说是这样的。高清地图是先由装有的各种传感器的车辆进行扫街。这种车辆在扫过每一条街之后,他可以获取相关的点云信息和摄像机信息还有其他高精度的经纬度信息。之后工作人员会基于这些信息,线下对它们进行进一步的编辑。这里涉及到的就是点云拼接,摄像机识别的道路信息,比如车道线,比如斑马线,比如交通信号灯。这些静态物体都是要由工作人员进行进一步确认并标注好的。虽然采集车辆上的摄像机会进行初步的特征识别提取这些道路相关的特征。但是毕竟是基于计算机视觉的,提取的并不是100%正确的信息,也有可能是错的,也有可能是某些标注没有标好。所以最后一步还是要有工作人员进行最终确认并标注的。

高精地图的制作工艺支持边缘计算的V2X高精度地图服务

未来自动驾驶的发展主要走向智能化、网联化两大方向,其重点是从车端智能化逐渐过渡到路端甚至云端智能化的方向。而针对高精地图部署来说,最重要的几个点是其云端、路端和车端上所产生的一系列升级和变革。其中,云端变革主要涉及高精度地图服务、分片数据聚合、数据接边、数据分片几个方面。而路侧端主要涉及分片地图众包更新、地图版本管理、地图分包、路侧动态信息优化、地图消息服务等几个方面。应用到车端时,要求在分包数据融合、V2X场景还原、高精地图引擎也随之更新。

智能驾驶发展的关键技术要素

地图的如上迭代更新过程可应用于实现L4/L5级无人驾驶功能,生成相关的机器人控制模式,也可在商用车的实现中发力,最终实现无人驾驶甚至远程驾驶。

02 面向量产的高精度融合定位解决方案

很显然,高精地图要实现精准定位和不断向前延展提升其功能性能就必须通过不断的优化自身的融合定位方案来获得。这一过程包含两个主要的软件算法。其一是通过全状态-扩展卡尔曼滤波进行车辆位姿的动态最优估计;其二是使用视觉传感器获取道路环境的语义信息,通过精确地图匹配算法获取精确位置。此外,需要提高经济性、适配度及整体性能。通过选择配置工业级车载终端RTK:采用高性能工业级32位处理器,内置高精度RTK板卡;通过3G/4G/5G与千寻平台建立通道,把GGA信息发给差分服务器,同时接收差分信息后,再通过 RS232输出精准位置信息。

智能驾驶发展的关键技术要素

03 地图分发与地图纵包

高精地图最重要的过程是包含地图众包的采集与分发。关于众包式地图数据的采集,实际上可以理解为用户通过自动驾驶车辆自身的传感器,或其他低成本的传感器硬件,收集的道路数据传到云端进行数据融合,并通过数据聚合的方式提高数据精度,来完成高精地图的制作。整个众包流程实际是包括物理传感器报告、地图场景匹配、场景聚类、改变检测与更新。

智能驾驶发展的关键技术要素

04 基于地图开发的自动驾驶的全新架构

将面向何方?

当前自动驾驶系统的高精地图架构仍然面向分布式方式,其重点关注项包含地图众包采集,地图盒子对于高精地图原始信息的解析,地图如何对其他传感器输入数据进行融合等方面。这里我们注意一点,未来的自动驾驶系统架构中将不断的从分布式的开发方式进化为集中式。集中式的方式可以被看成分三两步走:

Step1:智能驾驶域全集中式控制方案

即,将智能行车ADS、智能泊车AVP系统进行全集中控制,采用一套中央预处理装置将两大系统中索要处理的信息进行融合、预测、规划等处理方式。而与智能行车和智能泊车相关的所有传感及数据单元的处理方式(高精地图、激光雷达、全分布式摄像头、毫米波雷达等)都会相应的被融合进入中央域控制单元。

Step2:智能驾驶域与智能座舱域全集中式控制方案

这种方式是实现全集中式分布方式的第二个阶段,即将智能驾驶域控制器所涵盖的所有功能开发(如自动驾驶、自动泊车)与智能座舱域所涵盖的所有功能开发(包含驾驶员监控DMS、影音娱乐系统iHU、仪表显示系统IP)进行融合覆盖。

Step3:智能整车域全集中式控制方案

这里是实现包含智能驾驶、智能座舱与智能底盘域的全融合控制方式。即三大主体功能并入整车中央控制单元,后期对于该数据的处理将对域控制器产生更多的性能(算力、带宽、存储量等)需求。

这里我们所关注的高精地图定位开发在未来将更多的面向集中式的设计方式。我们将进行详述。

智能驾驶发展的关键技术要素

如上图表示了针对高精地图在未来自动驾驶系统控制中的架构发展趋势。未来自动驾驶系统将致力于将感知单元、决策单元及定图定位单元等全部并入中央域控制单元,意在从底层减少对于高精地图盒子的依赖。其域控制器的设计中充分考虑对于AI运算芯片SOC、逻辑运算芯片MCU、高精地图盒子的充分融合。

智能驾驶发展的关键技术要素

如上图表示了整个云端控制逻辑下相应的高精地图传感数据采集、数据学习、AI训练、高精地图服务、仿真等方面的业务,同时在车端的移动和验证过程中会通过物理感知、动态数据感知、地图目标感知、定位、路径规划等内容不断更新地图数据并进行OTA上传至云端更新整体的众包数据。

前文所述了关于高精地图数据如何生成可以为自动驾驶控制器处理的相关数据方式流程,我们知道高精地图所处理的原始数据为EHP数据。该数据实际包含如下主要的数据支撑:

1:接收的外部GPS位置信息;

2:位置信息匹配到地图;

3:建立路网拓扑信息;

4:通过CAN发送数据;

5:融合部分导航数据;

该数据一般是通过千兆以太网从HDMap感知端直接处理完成后输入至高精地图中央处理单元的,该中央处理单元我们称之为“高精地图盒子”。通过地图盒子对数据的进一步处理(这个实际的处理过程我们将在后续的文章中进行具体说明),可以转化为可以满足自动驾驶控制器处理的EHR(实际为CanFD)数据。

对于下一代自动驾驶系统而言,我们致力于将高精地图的信息综合接入自动驾驶域控制器进行整体处理,这一过程意味着我们自动驾驶域控制器需要接续地图盒子所要进行的所有数据解析工作,那么我们需要重点考虑以下几点:

1)自动驾驶域控制器AI芯片能否处理包含高精地图所需要的所有传感器数据?

2)高精定位地图的逻辑运算单元是否具备足够的算力执行传感器数据信息融合?

3)整个底层操作系统是否满足功能安全需求?

4)AI芯片与逻辑芯片采用怎样的连接方式可以确保数据传输的可靠性,Ethernet 还是 CanFD?

为了回答如上问题我们需要分析如下图所示的控制器处理高精地图数据方式。

智能驾驶发展的关键技术要素

为自动驾驶系统的AI芯片,在未来高精地图数据处理中主要承担传感数据的基础处理,包含摄像头数据、激光雷达数据、毫米波数据等。在应用的处理方法上除开基本的数据点云融合、聚类外,还包括了常用的深度学习算法,且一般采用ARM核进行中央运算处理。

MCU作为自动驾驶域控制器逻辑运算单元后续会承担将原来高精地图盒子需要的全部逻辑计算量。包括前端的矢量聚合、传感融合定位、建立路网图,以及最为重要的替代原来的地图盒子功能,将EHP信息转化为EHR信号(对于中央处理器MCU如何有效的将EHP信息转化为EHR信息将在后面的文章中进行详述),并通过Can线进行有效的信号传输。最终利用AutoBox这一逻辑运算单元进行路径规划、决策控制等操作。

阿贝智能 阿贝智能

阿贝智能是基于AI技术辅助创作儿童绘本、睡前故事和有声书的平台,助你创意实现、梦想成真。

阿贝智能 17 查看详情 阿贝智能

05 总结

未来的自动驾驶将倾向于将高精地图所处理的所有数据信息从原始地图盒子中融入到自动驾驶域控制器中,旨在建立真正的以整车域控制器为集成单位的中央处理大融合。这样的方式不仅能够节省更多的计算资源,也能够使得AI数据处理算法更好的应用到高精定位中,确保两者对于环境认知的一致性。我们后续需要更多的关注高精度传感数据大融合这个重要的方向,在芯片算力、接口设计、带宽设计及功能安全设计上多下功夫。

以上就是智能驾驶发展的关键技术要素概述的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/551227.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月9日 20:11:02
下一篇 2025年11月9日 20:11:30

相关推荐

  • 无需电池即可实现「自动驾驶」,华盛顿大学开发出无限续航的机器人

    不装电池,也能%ignore_a_1%的“车”出现了。 甚至还会自动收集能量持续运行,完全没有里程焦虑(手动狗头)。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 不错,这么一个小机器人,其实靠的是光和无线电波供能。其名MilliMobil…

    2025年12月2日 科技
    000
  • BEV下的Radar-Camera 融合跨数据集实验研究

    原标题:cross-dataset experimental study of radar-camera fusion in bird’s-eye view论文链接:https://arxiv.org/pdf/2309.15465.pdf作者单位:opel automobile gmbh rhein…

    2025年12月2日 科技
    000
  • 遥遥领先!BEVHeight++:针对路侧视觉3D目标检测新方案!

    回归到地面的高度,以实现距离不可知的公式,从而简化仅相机感知方法的优化过程。在路侧camera的3d检测基准上,方法大大超过了以前所有以视觉为中心的方法。它比bevdepth产生了+1.9%的nds和+1.1%的map的显著改善。在nuscenes测试集上,方法取得了实质性的进步,nds和map分别…

    2025年12月2日 科技
    000
  • 改进自动驾驶在不确定环境下的轨迹规划方法

    论文题目:《基于改进的模型预测控制的自动驾驶车辆在不确定环境下的轨迹规划方法》 发表期刊:IEEE Transactions on Intelligent Transportation Systems 发布日期:2023年04月 以下是我自己的論文閱讀筆記,主要是我自己覺得重點的部分,非全文翻譯,該…

    2025年12月2日 科技
    000
  • LeCun对自动驾驶独角兽的造假行为深感失望

    你以为这是一个普通的自动驾驶视频吗? ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 图片 这个内容需要重新写成中文,而不改变原来的意思 没有一帧是“真的”。 图片 不同路况、各种天气,20多种情况都能模拟,效果以假乱真。 图片 世界模型再次…

    2025年12月2日 科技
    000
  • 实战部署:动态时序网络用于端到端检测和跟踪

    本文经自动驾驶之心公众号授权转载,转载请联系出处。 相信除了少数自研芯片的大厂,绝大多数自动驾驶公司都会使用英伟达NVIDIA芯片,那就离不开TensorRT. TensorRT是在NVIDIA各种GPU硬件平台下运行的一个C++推理框架。我们利用Pytorch、TF或者其他框架训练好的模型,可以首…

    2025年12月2日 科技
    000
  • 自动驾驶中的交通规则识别问题

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 自动驾驶中的交通规则识别问题,需要具体代码示例 摘要:自动驾驶技术正在迅速发展,并且在未来有望实现商业化应用。然而,与此同时,自动驾驶车辆面临着一个重要的挑战,即交通规则的识别和遵守问题。本文将…

    2025年12月1日 科技
    000
  • 自动驾驶与轨迹预测看这一篇就够了!

    轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(cnn&gnn&…

    2025年12月1日 科技
    000
  • 2024年自动驾驶标注行业是否会被世界模型所颠覆?

    1.数据%ignore_a_1%面临的问题(特别是基于BEV 任务) 随着基于BEV transformer 任务的兴起,随之带来的是对数据的依赖变的越来越重,基于BEV 任务的标注也变得越来越重要。目前来看无论是2D-3D的联合障碍物标注,还是基于重建点云的clip 的车道线或者Occpuancy…

    2025年12月1日 科技
    000
  • “真假难辨”!巧用NeRF生成的自动驾驶仿真数据

    写在前面&笔者的个人理解 神经辐射场(NeRF)已成为推进自动驾驶(AD)重新搜索的前奏的工具,提供可扩展的闭环模拟和数据增强功能。然而,为了信任模拟中获得的结果,需要确保AD系统以相同的方式感知真实数据和渲染数据。尽管渲染方法的性能正在提高,但许多场景在忠实重建方面仍然具有固有的挑战性。为…

    2025年12月1日 科技
    000
  • RV融合性能拉爆!RCBEVDet:Radar也有春天,最新SOTA!

    写在前面&笔者的个人理解 这篇讨论文关注的主要问题是3D目标检测技术在自动驾驶进程中的应用。尽管环境视觉相机技术的发展为3D目标检测提供了高分辨率的语义信息,这种方法因无法精确捕获深度信息和在恶劣天气或低光照条件下的表现不佳等问题而受限。针对这一问题,讨论提出了一种结合环视相机和经济型毫米波…

    2025年12月1日 科技
    000
  • 马斯克预测:特斯拉全自动驾驶将在今年实现 对AI深度变化感到担忧

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 他强调特斯拉已经接近实现无人干预的全%ignore_a_1%状态,并指出了全自动驾驶的实用性和提高汽车使用率的重要性。马斯克同时表示特斯拉对于与其他汽车制造商分享和许可自动驾驶技术非常感兴趣。 …

    2025年12月1日 科技
    000
  • Gary Marcus:自动驾驶汽车状况频出,仍未赢得认可

    2016年,《纽约时报》一篇关于%ign%ignore_a_1%re_a_1%汽车的文章开头写道:“自动驾驶汽车时代已经到来,一些汽车制造商已投资数十亿美元进行研发……并在美国的一些城市开始测试。”经过7年的时间,自动驾驶技术取得了哪些进展呢? 纽约大学的心理学和神经科学荣誉教授Gary Marcu…

    2025年12月1日 科技
    000
  • 英国拟出新规,特斯拉或面临自动驾驶汽车禁售

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 据消息称,英国将出台《自动驾驶汽车法案》,特斯拉有可能被禁止在英国销售自动驾驶汽车。此举将给埃隆·马斯克和特斯拉带来重大挫折 英国交通运输部计划明年发布相关法规,规定未经批准的汽车制造商不得将车…

    2025年12月1日 科技
    000
  • 初学者必备,NeRF学习笔记洞察一切!

    神经辐射场究竟是什么 辐射场:由光源发出的光线在场景中的传播和反射过程中所形成的能量分布。通俗来说就是一个函数,记录了空间某个位置处向某个方向的辐射信息,辐射信息(或者说能量分布)其实就是颜色、亮度、阴影等信息。这里的方向需要额外留意,它是nerf实现真实重建的重要因素之一! 由此引出神经辐射场的概…

    2025年12月1日 科技
    000
  • 人工智能如何为未来智能大众出行解决方案铺平道路

    预计到2030年,有60%的人口将生活在城市地区。为了实现城镇化的进步,高效的人员流动至关重要。在各种公共交通方式中,铁路被认为是每乘客公里能源消耗最高效、最有效的选择。这是因为铁路系统不仅可以大大缓解城市拥堵问题,还能减少环境污染和交通事故的发生率。提升铁路网络的质量和覆盖范围,将有助于促进城市发…

    2025年12月1日 科技
    000
  • 清华叉院、理想提出DriveVLM,视觉大语言模型提升自动驾驶能力

    在自动驾驶领域,研究人员也在朝着 gpt/sora 等大模型方向进行探索。 与生成式 AI 相比,自动驾驶也是近期 AI 最活跃的研究和开发领域之一。要想构建完全的自动驾驶系统,人们面临的主要挑战是 AI 的场景理解,这会涉及到复杂、不可预测的场景,例如恶劣天气、复杂的道路布局和不可预见的人类行为。…

    2025年12月1日 科技
    000
  • 特斯拉:坚持视觉处理方案

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 近日,%ignore_a_1%官方发布声明,强调继续采用视觉处理方案,致力于让每个人都能负担得起安全且智能的产品。通过特斯拉的视觉处理方案和端到端神经网络,结合数十亿真实世界数据样本的训练,实现…

    2025年12月1日
    000
  • 全球首个,中国将主持编制铁路自动驾驶国际标准

    本站 7 月 11 日消息,据中国铁道建筑报报道,日前,在瑞典斯德哥尔摩召开的国际标准化组织 ISO / TC269 / SC3 第 9 次全体大会上,经过法国、德国、日本等 13 个国家的专家及 UIC 观察员全体投票,一致同意通过了由中国铁建铁四院技术专家冯梅牵头的《应用自动驾驶模式的运营规则导…

    2025年11月29日 行业动态
    000
  • 前特斯拉总监、OpenAI大牛Karpathy:我被自动驾驶分了心,AI智能体才是未来!

    近日,OpenAI联合创始人,曾经TeslaAI总监,现在又重新返回OpenAI的Andrej Karpathy在一个开发者活动上,分享了自己对于AI智能体的看法。 7年前,研究AI智能体的时机还不成熟 他先聊到了自己早期在OpenAI工作时(2016年左右),当时的业界潮流就是研究如何用强化学习的…

    2025年11月28日 科技
    000

发表回复

登录后才能评论
关注微信