量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!

写在前面

当前自动驾驶系统摆脱对高精度地图依赖的算法之一,是利用远距离范围下的感知表现依然较差的现实依然较差。为此,我们提出了p-mapnet,其中的“p”专注于融合地图先验来提高模型性能。具体来说,我们利用了sdmap和hdmap中的先验信息:一方面,我们从openstreetmap中提取了弱对准的sdmap数据,并将其编码为独立的条款来支持输入。严格修改输入与实际hd+map存在弱对齐的问题,我们基于cross-attention机制的结构能够自适应地关注sdmap骨架,并带来显著的性能提升;另一方面,我们提出了一种使用mae来捕捉hdmap的先验分布的refine模块,该模块有助于生成更符合实际地图的分布,有助于减小遮挡、伪影等影响。我们在nuscenes和argoverse2数据集上进行了广泛的实验验证。

量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!图 1

总结来说我们的贡献如下:

我们的SDMap先进能够提升在线地图生成性能,包含了栅格化(最多可提高18.73 mIoU)和量化化(最多可提高8.50 mAP)两种地图表现。

(2)我们的HDMap先验能够将地图感知指标提升最多6.34%。

(3)P-MapNet可以切换到不同的推理模式,以在精度和效率之间进行权衡。

P-MapNet是一种远距离HD+Map生成的解决方案,对于较远的感知范围能够带来更大的改进。我们的代码和模型已经公开发布在https://jike5.github.io/P-MapNet/。

相关工作回顾

(1)在线地图生成

HD+Map的制作主要包含SLAM建图、自动标注、人工标注等步骤。这导致了HD+Map的成本高、鲜度有限。因此,在线地图生成对于自动驾驶系统是至关重要的。HDMapNet将地图元素通 过格化化进行表达,使用pixel-wise的预测和后处理方法获得矢量化的预测结果。最近的一些方法,如MapTR、PivotNet、Streammapnet等基于Transformer架构实现了端到端的矢量化预测,但这些方法仅使用传感器输入,在遮挡、极端天气等复杂环境下性能仍有限。

(2)远距离地图感知

为了让在线地图生成的结果能够更好的被下游模块使用,一些研究尝试将地图感知范围进一步拓展。SuperFusion[7]通过融合激光雷达和相机,通过depth-aware BEV变换,实现了前向90m的远距离预测。NeuralMapPrior[8]通过维护和更新全局神经地图先验来增强当前在线观测的质量、拓展感知的范围。[6]通过将卫星图像与车载传感器数据进行特征聚合来获得BEV特征,进一步再进行预测。MV-Map则专注于离线、长距离的地图生成,该方法通过聚合所有关联帧特征,并使用神经辐射场来对BEV特征进行优化。

概述P-MapNet

整体框架如图 2所示。

量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!图 2

输入: 系统输入为点云: 、环视相机:,其中  为环视相机数量。通常的HDMap生成任务(例如HDMapNet)可以定义为:

其中 表示特征提取,  表示segmentation head, 则是HDMap的预测结果。

我们所提出的P-MapNet融合了SD Map和HD Map先验,这种新任务( setting)可以表示为:

其中, 表示SDMap先验, 表示本文所提的refinement模块。 模块通过预训练的方式学习HD Map分布先验。类似的,当只使用SDMap先验时,则得到 -only setting:

输出:对于地图生成任务,通常有两种地图表示形式:栅格化和矢量化。在本文的研究中,由于本文所设计的两个先验模块更适合栅格化输出,因此我们主要集中在栅格化的表示上。

3.1 SDMap Prior 模块

SDMap数据生成

炫图AI 炫图AI

全能AI修图神器,AI换装、修图、改图、P图

炫图AI 193 查看详情 炫图AI

本文基于nuScenes和Argoverse2数据集进行研究,使用OpenStreetMap数据生成以上数据集对应区域的SD Map数据,并通过车辆GPS进行坐标系变换,以获取对应区域的SD Map。

BEV Query

如图2中所示,我们首先分别对图像数据进行特征提取和视角转换、对点云进行特征提取,得到BEV特征。然后将BEV特征通过卷积网络进行下采样后得到新的BEV特征:,将该特征图展平得到BEV Query。

SD Map先验融合

对于SD Map数据,通过卷积网络进行特征提取后,得到的特征  与BEV Query进行Cross-attention机制:

经过交叉注意力机制后得到的BEV特征通过segmentation head可以获得地图元素的初始预测。

3.2、HDMap Prior 模块

直接将栅格化的HD Map作为原始MAE的输入,MAE则会通过MSE Loss进行训练,从而导致无法作为refinement模块。因此在本文中,我们通过将MAE的输出替换为我们的segmentation head。为了让预测的地图元素具有连续性和真实性(与实际HD Map的分布更贴近),我们使用了一个预训练的MAE模块来进行refine。训练该模块包含两步:第一步上使用自监督学习训练MAE模块来学习HD Map的分布,第二步是通过使用第一步得到的权重作为初始权重,对网络的所有模块进行微调。

第一步预训练时,从数据集中获取的真实HD Map经过随机mask后作为网络输入 ,训练目标则为补全HD Map:

量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!

第二步fine-tune时, 则使用第一步预训练的权重作为初始权重,完整的网络为:

量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!

4、实验

4.1 数据集和指标

我们在两个主流的数据集上进行了评测:nuScenes和Argoverse2。为了证明我们所提方法在远距离上的有效性,我们设置了在三种不同的探测距离:, , 。其中, 范围中BEV Grid的分辨率为0.15m,另外两种范围下分辨率为0.3m。我们使用mIOU指标来评估栅格化预测结果,使用mAP来评估矢量化预测结果。为了评估地图的真实性,我们还使用了LPIPS指标作为地图感知指标。

4.2 结果

与SOTA结果对比:我们对所提的方法与当前SOTA方法在短距离(60m × 30m)和长距离(90m × 30m)下的地图生成结果进行比较。如表II所示,我们的方法在与现有的仅视觉和多模态(RGB+LiDAR)方法相比表现出更优越的性能。

量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!

我们在不同距离和使用不同传感器模式下,与HDMapNet [14] 进行了性能比较,结果总结在表I和表III中。我们的方法在240m×60m范围的mIOU上取得了13.4%改进。随着感知距离超出或甚至超过传感器检测范围,SDMap先验的有效性变得更加显著,从而验证了SDMap先验的功效。最后,我们利用HD地图先验通过将初始预测结果精细化以使其更加真实,并消除了错误结果,进一步带来了性能提升。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!

量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!

HDMap先验的感知度量指标。HDMap先验模块将网络的初始预测映射到HD地图的分布上,使其更加真实。为了评估HDMap先验模块输出的真实性,我们利用了感知度量LPIPS 数值越低表示性能越好)进行评测。如表IV所示,在  setting 中LPIPS指标要比 -only setting 中的提升更大。

量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!

量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!

可视化:

量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!

量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!

以上就是量产杀器!P-Mapnet:利用低精地图SDMap先验,建图性能暴力提升近20个点!的详细内容,更多请关注创想鸟其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 chuangxiangniao@163.com 举报,一经查实,本站将立刻删除。
发布者:程序猿,转转请注明出处:https://www.chuangxiangniao.com/p/618280.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2025年11月11日 05:13:38
下一篇 2025年11月11日 05:14:46

相关推荐

  • 无需电池即可实现「自动驾驶」,华盛顿大学开发出无限续航的机器人

    不装电池,也能%ignore_a_1%的“车”出现了。 甚至还会自动收集能量持续运行,完全没有里程焦虑(手动狗头)。 ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 不错,这么一个小机器人,其实靠的是光和无线电波供能。其名MilliMobil…

    2025年12月2日 科技
    000
  • BEV下的Radar-Camera 融合跨数据集实验研究

    原标题:cross-dataset experimental study of radar-camera fusion in bird’s-eye view论文链接:https://arxiv.org/pdf/2309.15465.pdf作者单位:opel automobile gmbh rhein…

    2025年12月2日 科技
    000
  • 遥遥领先!BEVHeight++:针对路侧视觉3D目标检测新方案!

    回归到地面的高度,以实现距离不可知的公式,从而简化仅相机感知方法的优化过程。在路侧camera的3d检测基准上,方法大大超过了以前所有以视觉为中心的方法。它比bevdepth产生了+1.9%的nds和+1.1%的map的显著改善。在nuscenes测试集上,方法取得了实质性的进步,nds和map分别…

    2025年12月2日 科技
    000
  • 改进自动驾驶在不确定环境下的轨迹规划方法

    论文题目:《基于改进的模型预测控制的自动驾驶车辆在不确定环境下的轨迹规划方法》 发表期刊:IEEE Transactions on Intelligent Transportation Systems 发布日期:2023年04月 以下是我自己的論文閱讀筆記,主要是我自己覺得重點的部分,非全文翻譯,該…

    2025年12月2日 科技
    000
  • LeCun对自动驾驶独角兽的造假行为深感失望

    你以为这是一个普通的自动驾驶视频吗? ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 图片 这个内容需要重新写成中文,而不改变原来的意思 没有一帧是“真的”。 图片 不同路况、各种天气,20多种情况都能模拟,效果以假乱真。 图片 世界模型再次…

    2025年12月2日 科技
    000
  • 实战部署:动态时序网络用于端到端检测和跟踪

    本文经自动驾驶之心公众号授权转载,转载请联系出处。 相信除了少数自研芯片的大厂,绝大多数自动驾驶公司都会使用英伟达NVIDIA芯片,那就离不开TensorRT. TensorRT是在NVIDIA各种GPU硬件平台下运行的一个C++推理框架。我们利用Pytorch、TF或者其他框架训练好的模型,可以首…

    2025年12月2日 科技
    000
  • 自动驾驶中的交通规则识别问题

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 自动驾驶中的交通规则识别问题,需要具体代码示例 摘要:自动驾驶技术正在迅速发展,并且在未来有望实现商业化应用。然而,与此同时,自动驾驶车辆面临着一个重要的挑战,即交通规则的识别和遵守问题。本文将…

    2025年12月1日 科技
    000
  • 自动驾驶与轨迹预测看这一篇就够了!

    轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(cnn&gnn&…

    2025年12月1日 科技
    000
  • 2024年自动驾驶标注行业是否会被世界模型所颠覆?

    1.数据%ignore_a_1%面临的问题(特别是基于BEV 任务) 随着基于BEV transformer 任务的兴起,随之带来的是对数据的依赖变的越来越重,基于BEV 任务的标注也变得越来越重要。目前来看无论是2D-3D的联合障碍物标注,还是基于重建点云的clip 的车道线或者Occpuancy…

    2025年12月1日 科技
    000
  • “真假难辨”!巧用NeRF生成的自动驾驶仿真数据

    写在前面&笔者的个人理解 神经辐射场(NeRF)已成为推进自动驾驶(AD)重新搜索的前奏的工具,提供可扩展的闭环模拟和数据增强功能。然而,为了信任模拟中获得的结果,需要确保AD系统以相同的方式感知真实数据和渲染数据。尽管渲染方法的性能正在提高,但许多场景在忠实重建方面仍然具有固有的挑战性。为…

    2025年12月1日 科技
    000
  • RV融合性能拉爆!RCBEVDet:Radar也有春天,最新SOTA!

    写在前面&笔者的个人理解 这篇讨论文关注的主要问题是3D目标检测技术在自动驾驶进程中的应用。尽管环境视觉相机技术的发展为3D目标检测提供了高分辨率的语义信息,这种方法因无法精确捕获深度信息和在恶劣天气或低光照条件下的表现不佳等问题而受限。针对这一问题,讨论提出了一种结合环视相机和经济型毫米波…

    2025年12月1日 科技
    000
  • 马斯克预测:特斯拉全自动驾驶将在今年实现 对AI深度变化感到担忧

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 他强调特斯拉已经接近实现无人干预的全%ignore_a_1%状态,并指出了全自动驾驶的实用性和提高汽车使用率的重要性。马斯克同时表示特斯拉对于与其他汽车制造商分享和许可自动驾驶技术非常感兴趣。 …

    2025年12月1日 科技
    000
  • Gary Marcus:自动驾驶汽车状况频出,仍未赢得认可

    2016年,《纽约时报》一篇关于%ign%ignore_a_1%re_a_1%汽车的文章开头写道:“自动驾驶汽车时代已经到来,一些汽车制造商已投资数十亿美元进行研发……并在美国的一些城市开始测试。”经过7年的时间,自动驾驶技术取得了哪些进展呢? 纽约大学的心理学和神经科学荣誉教授Gary Marcu…

    2025年12月1日 科技
    000
  • 英国拟出新规,特斯拉或面临自动驾驶汽车禁售

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 据消息称,英国将出台《自动驾驶汽车法案》,特斯拉有可能被禁止在英国销售自动驾驶汽车。此举将给埃隆·马斯克和特斯拉带来重大挫折 英国交通运输部计划明年发布相关法规,规定未经批准的汽车制造商不得将车…

    2025年12月1日 科技
    000
  • 初学者必备,NeRF学习笔记洞察一切!

    神经辐射场究竟是什么 辐射场:由光源发出的光线在场景中的传播和反射过程中所形成的能量分布。通俗来说就是一个函数,记录了空间某个位置处向某个方向的辐射信息,辐射信息(或者说能量分布)其实就是颜色、亮度、阴影等信息。这里的方向需要额外留意,它是nerf实现真实重建的重要因素之一! 由此引出神经辐射场的概…

    2025年12月1日 科技
    000
  • 人工智能如何为未来智能大众出行解决方案铺平道路

    预计到2030年,有60%的人口将生活在城市地区。为了实现城镇化的进步,高效的人员流动至关重要。在各种公共交通方式中,铁路被认为是每乘客公里能源消耗最高效、最有效的选择。这是因为铁路系统不仅可以大大缓解城市拥堵问题,还能减少环境污染和交通事故的发生率。提升铁路网络的质量和覆盖范围,将有助于促进城市发…

    2025年12月1日 科技
    000
  • 清华叉院、理想提出DriveVLM,视觉大语言模型提升自动驾驶能力

    在自动驾驶领域,研究人员也在朝着 gpt/sora 等大模型方向进行探索。 与生成式 AI 相比,自动驾驶也是近期 AI 最活跃的研究和开发领域之一。要想构建完全的自动驾驶系统,人们面临的主要挑战是 AI 的场景理解,这会涉及到复杂、不可预测的场景,例如恶劣天气、复杂的道路布局和不可预见的人类行为。…

    2025年12月1日 科技
    000
  • 特斯拉:坚持视觉处理方案

    ☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜ 近日,%ignore_a_1%官方发布声明,强调继续采用视觉处理方案,致力于让每个人都能负担得起安全且智能的产品。通过特斯拉的视觉处理方案和端到端神经网络,结合数十亿真实世界数据样本的训练,实现…

    2025年12月1日
    000
  • 全球首个,中国将主持编制铁路自动驾驶国际标准

    本站 7 月 11 日消息,据中国铁道建筑报报道,日前,在瑞典斯德哥尔摩召开的国际标准化组织 ISO / TC269 / SC3 第 9 次全体大会上,经过法国、德国、日本等 13 个国家的专家及 UIC 观察员全体投票,一致同意通过了由中国铁建铁四院技术专家冯梅牵头的《应用自动驾驶模式的运营规则导…

    2025年11月29日 行业动态
    000
  • 前特斯拉总监、OpenAI大牛Karpathy:我被自动驾驶分了心,AI智能体才是未来!

    近日,OpenAI联合创始人,曾经TeslaAI总监,现在又重新返回OpenAI的Andrej Karpathy在一个开发者活动上,分享了自己对于AI智能体的看法。 7年前,研究AI智能体的时机还不成熟 他先聊到了自己早期在OpenAI工作时(2016年左右),当时的业界潮流就是研究如何用强化学习的…

    2025年11月28日 科技
    000

发表回复

登录后才能评论
关注微信